Field validation of soil solute profiles in irrigated cotton

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

Management of water and fertilizer N are important aspects of cotton production in the desert Southwest. GOSSYM, a cotton growth simulation model, has been used extensively to manage these inputs. Our objectives were to further validate GOSSYM by comparing model-simulated and measured soil NO3/--N profiles, to evaluate GOSSYM's potential as a management tool under irrigated growing conditions in the desert part of the U.S. Cotton Belt, and to address questions about the way GOSSYM simulates NO3/--N movement through the soil profile in relation to irrigation water management (which in turn affects prediction of plant growth and development). We compared measured profiles of NO3--N with GOSSYM-simulated profiles. Soil profile samples were obtained from an existing N-management field study, a split-plot within a randomized complete block design. Mainplots were upland and pima cotton (G. hirsutum L. cv. DPL 5415 and G. barbadense L. cv. Pima S-7, respectively). Subplots were a check (0 fertilizer N) and three other N-management strategies. The cotton was grown on a Casa Grande sandy loam [fine-loamy, mixed, hyperthermic Typic Natrargid (reclaimed)] near Maricopa, AZ, in 1994 and 1995. Fertilizer N rates ranged from 0 to 350 kg ha-1 in 1994 and 0 to 392 kg ha-1 in 1995. Soil samples taken to a depth of 120 cm in 30-cm increments were analyzed for NO3/--N. Comparisons of simulated and actual NO3/--N profiles revealed tendencies in GOSSYM to overestimate NO3/--N leaching out of the effective rooting zone, resulting in simulated N stresses midseason. When GOSSYM simulated an N stress, between 50 and 75% of the simulated soil NO3/--N values were greater than the measured values, yet the simulated N stress still occurred. This indicates possible limitations in GOSSYM's ability to adequately predict N uptake by plants. The dynamic soil N portion of the model needs further refinement, particularly for cotton production under irrigated desert conditions.

Original languageEnglish (US)
Pages (from-to)623-630
Number of pages8
JournalAgronomy Journal
Volume90
Issue number5
StatePublished - Sep 1998

Fingerprint

solutes
cotton
deserts
soil
nitrogen fertilizers
soil profiles
irrigation management
water management
growth models
plant development
rooting
simulation models
leaching
growth and development
highlands
soil sampling
plant growth
uptake mechanisms
prediction
sampling

ASJC Scopus subject areas

  • Agronomy and Crop Science

Cite this

Field validation of soil solute profiles in irrigated cotton. / Norton, Elbert R; Silvertooth, Jeffrey.

In: Agronomy Journal, Vol. 90, No. 5, 09.1998, p. 623-630.

Research output: Contribution to journalArticle

@article{e76b298b936f407eb1b7551fecd5ec7a,
title = "Field validation of soil solute profiles in irrigated cotton",
abstract = "Management of water and fertilizer N are important aspects of cotton production in the desert Southwest. GOSSYM, a cotton growth simulation model, has been used extensively to manage these inputs. Our objectives were to further validate GOSSYM by comparing model-simulated and measured soil NO3/--N profiles, to evaluate GOSSYM's potential as a management tool under irrigated growing conditions in the desert part of the U.S. Cotton Belt, and to address questions about the way GOSSYM simulates NO3/--N movement through the soil profile in relation to irrigation water management (which in turn affects prediction of plant growth and development). We compared measured profiles of NO3--N with GOSSYM-simulated profiles. Soil profile samples were obtained from an existing N-management field study, a split-plot within a randomized complete block design. Mainplots were upland and pima cotton (G. hirsutum L. cv. DPL 5415 and G. barbadense L. cv. Pima S-7, respectively). Subplots were a check (0 fertilizer N) and three other N-management strategies. The cotton was grown on a Casa Grande sandy loam [fine-loamy, mixed, hyperthermic Typic Natrargid (reclaimed)] near Maricopa, AZ, in 1994 and 1995. Fertilizer N rates ranged from 0 to 350 kg ha-1 in 1994 and 0 to 392 kg ha-1 in 1995. Soil samples taken to a depth of 120 cm in 30-cm increments were analyzed for NO3/--N. Comparisons of simulated and actual NO3/--N profiles revealed tendencies in GOSSYM to overestimate NO3/--N leaching out of the effective rooting zone, resulting in simulated N stresses midseason. When GOSSYM simulated an N stress, between 50 and 75{\%} of the simulated soil NO3/--N values were greater than the measured values, yet the simulated N stress still occurred. This indicates possible limitations in GOSSYM's ability to adequately predict N uptake by plants. The dynamic soil N portion of the model needs further refinement, particularly for cotton production under irrigated desert conditions.",
author = "Norton, {Elbert R} and Jeffrey Silvertooth",
year = "1998",
month = "9",
language = "English (US)",
volume = "90",
pages = "623--630",
journal = "Agronomy Journal",
issn = "0002-1962",
publisher = "American Society of Agronomy",
number = "5",

}

TY - JOUR

T1 - Field validation of soil solute profiles in irrigated cotton

AU - Norton, Elbert R

AU - Silvertooth, Jeffrey

PY - 1998/9

Y1 - 1998/9

N2 - Management of water and fertilizer N are important aspects of cotton production in the desert Southwest. GOSSYM, a cotton growth simulation model, has been used extensively to manage these inputs. Our objectives were to further validate GOSSYM by comparing model-simulated and measured soil NO3/--N profiles, to evaluate GOSSYM's potential as a management tool under irrigated growing conditions in the desert part of the U.S. Cotton Belt, and to address questions about the way GOSSYM simulates NO3/--N movement through the soil profile in relation to irrigation water management (which in turn affects prediction of plant growth and development). We compared measured profiles of NO3--N with GOSSYM-simulated profiles. Soil profile samples were obtained from an existing N-management field study, a split-plot within a randomized complete block design. Mainplots were upland and pima cotton (G. hirsutum L. cv. DPL 5415 and G. barbadense L. cv. Pima S-7, respectively). Subplots were a check (0 fertilizer N) and three other N-management strategies. The cotton was grown on a Casa Grande sandy loam [fine-loamy, mixed, hyperthermic Typic Natrargid (reclaimed)] near Maricopa, AZ, in 1994 and 1995. Fertilizer N rates ranged from 0 to 350 kg ha-1 in 1994 and 0 to 392 kg ha-1 in 1995. Soil samples taken to a depth of 120 cm in 30-cm increments were analyzed for NO3/--N. Comparisons of simulated and actual NO3/--N profiles revealed tendencies in GOSSYM to overestimate NO3/--N leaching out of the effective rooting zone, resulting in simulated N stresses midseason. When GOSSYM simulated an N stress, between 50 and 75% of the simulated soil NO3/--N values were greater than the measured values, yet the simulated N stress still occurred. This indicates possible limitations in GOSSYM's ability to adequately predict N uptake by plants. The dynamic soil N portion of the model needs further refinement, particularly for cotton production under irrigated desert conditions.

AB - Management of water and fertilizer N are important aspects of cotton production in the desert Southwest. GOSSYM, a cotton growth simulation model, has been used extensively to manage these inputs. Our objectives were to further validate GOSSYM by comparing model-simulated and measured soil NO3/--N profiles, to evaluate GOSSYM's potential as a management tool under irrigated growing conditions in the desert part of the U.S. Cotton Belt, and to address questions about the way GOSSYM simulates NO3/--N movement through the soil profile in relation to irrigation water management (which in turn affects prediction of plant growth and development). We compared measured profiles of NO3--N with GOSSYM-simulated profiles. Soil profile samples were obtained from an existing N-management field study, a split-plot within a randomized complete block design. Mainplots were upland and pima cotton (G. hirsutum L. cv. DPL 5415 and G. barbadense L. cv. Pima S-7, respectively). Subplots were a check (0 fertilizer N) and three other N-management strategies. The cotton was grown on a Casa Grande sandy loam [fine-loamy, mixed, hyperthermic Typic Natrargid (reclaimed)] near Maricopa, AZ, in 1994 and 1995. Fertilizer N rates ranged from 0 to 350 kg ha-1 in 1994 and 0 to 392 kg ha-1 in 1995. Soil samples taken to a depth of 120 cm in 30-cm increments were analyzed for NO3/--N. Comparisons of simulated and actual NO3/--N profiles revealed tendencies in GOSSYM to overestimate NO3/--N leaching out of the effective rooting zone, resulting in simulated N stresses midseason. When GOSSYM simulated an N stress, between 50 and 75% of the simulated soil NO3/--N values were greater than the measured values, yet the simulated N stress still occurred. This indicates possible limitations in GOSSYM's ability to adequately predict N uptake by plants. The dynamic soil N portion of the model needs further refinement, particularly for cotton production under irrigated desert conditions.

UR - http://www.scopus.com/inward/record.url?scp=0006879102&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0006879102&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0006879102

VL - 90

SP - 623

EP - 630

JO - Agronomy Journal

JF - Agronomy Journal

SN - 0002-1962

IS - 5

ER -