Finite genus solutions to the Ablowitz‐Ladik equations

Peter D. Miller, Nicholas M Ercolani, Igor M. Krichever, C. David Levermore

Research output: Contribution to journalArticle

63 Citations (Scopus)

Abstract

Generic wave train solutions to the complex Ablowitz‐Ladik equations are developed using methods of algebraic geometry. The inverse spectral transform is used to realize these solutions as potentials in a spatially discrete linear operator. The manifold of wave trains is infinite‐dimensional, but is stratified by finite‐dimensional submanifolds indexed by nonnegative integers g. Each of these strata is a foliation whose leaves are parametrized by the moduli space of (possibly singular) hyperelliptic Riemann surfaces of genus g. The generic leaf is a g‐dimensional complex torus. Thus, each wave train is constructed from a finite number of complex numbers comprising a set of spectral data, indicating that the wave train has a finite number of degrees of freedom. Our construction uses a new Lax pair differing from that originally given by Ablowitz and Ladik. This new Lax pair allows a simplified construction that avoids some of the degeneracies encountered in previous analyses that make use of the original discretized AKNS Lax pair. Generic wave trains are built from Baker‐Akhiezer functions on nonsingular Riemann surfaces having distinct branch points, and the construction is extended to handle singular Riemann surfaces that are pinched off at a coinciding pair of branch points. The corresponding solutions in the pinched case may also be derived from wave trains belonging to nonsingular surfaces using Bäcklund transformations. The problem of reducing the complex Ablowitz‐Ladik equations to the focusing and defocusing versions of the discrete nonlinear Schrödinger equation is solved by specifying which spectral data correspond to focusing or defocusing potentials. Within the class of finite genus complex potentials, spatially periodic potentials are isolated, resulting in a formula for the solution to the spatially periodic initial‐value problem. Formal modulation equations governing slow evolution of (g + 1)‐phase wave trains are developed, and a gauge invariance is used to simplify the equations in the focusing and defocusing cases. In both of these cases, the modulation equations can be either hyperbolic (suggesting modulational stability) or elliptic (suggesting modulational instability), depending upon the local initial data. As has been shown to be the case with modulation equations for other integrable systems, hyperbolic data will remain hyperbolic under the evolution, at least until infinite derivatives develop.

Original languageEnglish (US)
Pages (from-to)1369-1440
Number of pages72
JournalCommunications on Pure and Applied Mathematics
Volume48
Issue number12
DOIs
StatePublished - 1995

Fingerprint

Genus
Modulation Equations
Lax Pair
Riemann Surface
Branch Point
Modulation
Leaves
Singular Surfaces
Modulational Instability
Complex Potential
Discrete Operators
Gauge Invariance
Periodic Problem
Periodic Potential
Algebraic Geometry
Discrete Equations
Integrable Systems
Complex number
Invariance
Foliation

ASJC Scopus subject areas

  • Mathematics(all)
  • Applied Mathematics

Cite this

Finite genus solutions to the Ablowitz‐Ladik equations. / Miller, Peter D.; Ercolani, Nicholas M; Krichever, Igor M.; Levermore, C. David.

In: Communications on Pure and Applied Mathematics, Vol. 48, No. 12, 1995, p. 1369-1440.

Research output: Contribution to journalArticle

Miller, Peter D. ; Ercolani, Nicholas M ; Krichever, Igor M. ; Levermore, C. David. / Finite genus solutions to the Ablowitz‐Ladik equations. In: Communications on Pure and Applied Mathematics. 1995 ; Vol. 48, No. 12. pp. 1369-1440.
@article{f4670b40679f4278ba76cff2578214b7,
title = "Finite genus solutions to the Ablowitz‐Ladik equations",
abstract = "Generic wave train solutions to the complex Ablowitz‐Ladik equations are developed using methods of algebraic geometry. The inverse spectral transform is used to realize these solutions as potentials in a spatially discrete linear operator. The manifold of wave trains is infinite‐dimensional, but is stratified by finite‐dimensional submanifolds indexed by nonnegative integers g. Each of these strata is a foliation whose leaves are parametrized by the moduli space of (possibly singular) hyperelliptic Riemann surfaces of genus g. The generic leaf is a g‐dimensional complex torus. Thus, each wave train is constructed from a finite number of complex numbers comprising a set of spectral data, indicating that the wave train has a finite number of degrees of freedom. Our construction uses a new Lax pair differing from that originally given by Ablowitz and Ladik. This new Lax pair allows a simplified construction that avoids some of the degeneracies encountered in previous analyses that make use of the original discretized AKNS Lax pair. Generic wave trains are built from Baker‐Akhiezer functions on nonsingular Riemann surfaces having distinct branch points, and the construction is extended to handle singular Riemann surfaces that are pinched off at a coinciding pair of branch points. The corresponding solutions in the pinched case may also be derived from wave trains belonging to nonsingular surfaces using B{\"a}cklund transformations. The problem of reducing the complex Ablowitz‐Ladik equations to the focusing and defocusing versions of the discrete nonlinear Schr{\"o}dinger equation is solved by specifying which spectral data correspond to focusing or defocusing potentials. Within the class of finite genus complex potentials, spatially periodic potentials are isolated, resulting in a formula for the solution to the spatially periodic initial‐value problem. Formal modulation equations governing slow evolution of (g + 1)‐phase wave trains are developed, and a gauge invariance is used to simplify the equations in the focusing and defocusing cases. In both of these cases, the modulation equations can be either hyperbolic (suggesting modulational stability) or elliptic (suggesting modulational instability), depending upon the local initial data. As has been shown to be the case with modulation equations for other integrable systems, hyperbolic data will remain hyperbolic under the evolution, at least until infinite derivatives develop.",
author = "Miller, {Peter D.} and Ercolani, {Nicholas M} and Krichever, {Igor M.} and Levermore, {C. David}",
year = "1995",
doi = "10.1002/cpa.3160481203",
language = "English (US)",
volume = "48",
pages = "1369--1440",
journal = "Communications on Pure and Applied Mathematics",
issn = "0010-3640",
publisher = "Wiley-Liss Inc.",
number = "12",

}

TY - JOUR

T1 - Finite genus solutions to the Ablowitz‐Ladik equations

AU - Miller, Peter D.

AU - Ercolani, Nicholas M

AU - Krichever, Igor M.

AU - Levermore, C. David

PY - 1995

Y1 - 1995

N2 - Generic wave train solutions to the complex Ablowitz‐Ladik equations are developed using methods of algebraic geometry. The inverse spectral transform is used to realize these solutions as potentials in a spatially discrete linear operator. The manifold of wave trains is infinite‐dimensional, but is stratified by finite‐dimensional submanifolds indexed by nonnegative integers g. Each of these strata is a foliation whose leaves are parametrized by the moduli space of (possibly singular) hyperelliptic Riemann surfaces of genus g. The generic leaf is a g‐dimensional complex torus. Thus, each wave train is constructed from a finite number of complex numbers comprising a set of spectral data, indicating that the wave train has a finite number of degrees of freedom. Our construction uses a new Lax pair differing from that originally given by Ablowitz and Ladik. This new Lax pair allows a simplified construction that avoids some of the degeneracies encountered in previous analyses that make use of the original discretized AKNS Lax pair. Generic wave trains are built from Baker‐Akhiezer functions on nonsingular Riemann surfaces having distinct branch points, and the construction is extended to handle singular Riemann surfaces that are pinched off at a coinciding pair of branch points. The corresponding solutions in the pinched case may also be derived from wave trains belonging to nonsingular surfaces using Bäcklund transformations. The problem of reducing the complex Ablowitz‐Ladik equations to the focusing and defocusing versions of the discrete nonlinear Schrödinger equation is solved by specifying which spectral data correspond to focusing or defocusing potentials. Within the class of finite genus complex potentials, spatially periodic potentials are isolated, resulting in a formula for the solution to the spatially periodic initial‐value problem. Formal modulation equations governing slow evolution of (g + 1)‐phase wave trains are developed, and a gauge invariance is used to simplify the equations in the focusing and defocusing cases. In both of these cases, the modulation equations can be either hyperbolic (suggesting modulational stability) or elliptic (suggesting modulational instability), depending upon the local initial data. As has been shown to be the case with modulation equations for other integrable systems, hyperbolic data will remain hyperbolic under the evolution, at least until infinite derivatives develop.

AB - Generic wave train solutions to the complex Ablowitz‐Ladik equations are developed using methods of algebraic geometry. The inverse spectral transform is used to realize these solutions as potentials in a spatially discrete linear operator. The manifold of wave trains is infinite‐dimensional, but is stratified by finite‐dimensional submanifolds indexed by nonnegative integers g. Each of these strata is a foliation whose leaves are parametrized by the moduli space of (possibly singular) hyperelliptic Riemann surfaces of genus g. The generic leaf is a g‐dimensional complex torus. Thus, each wave train is constructed from a finite number of complex numbers comprising a set of spectral data, indicating that the wave train has a finite number of degrees of freedom. Our construction uses a new Lax pair differing from that originally given by Ablowitz and Ladik. This new Lax pair allows a simplified construction that avoids some of the degeneracies encountered in previous analyses that make use of the original discretized AKNS Lax pair. Generic wave trains are built from Baker‐Akhiezer functions on nonsingular Riemann surfaces having distinct branch points, and the construction is extended to handle singular Riemann surfaces that are pinched off at a coinciding pair of branch points. The corresponding solutions in the pinched case may also be derived from wave trains belonging to nonsingular surfaces using Bäcklund transformations. The problem of reducing the complex Ablowitz‐Ladik equations to the focusing and defocusing versions of the discrete nonlinear Schrödinger equation is solved by specifying which spectral data correspond to focusing or defocusing potentials. Within the class of finite genus complex potentials, spatially periodic potentials are isolated, resulting in a formula for the solution to the spatially periodic initial‐value problem. Formal modulation equations governing slow evolution of (g + 1)‐phase wave trains are developed, and a gauge invariance is used to simplify the equations in the focusing and defocusing cases. In both of these cases, the modulation equations can be either hyperbolic (suggesting modulational stability) or elliptic (suggesting modulational instability), depending upon the local initial data. As has been shown to be the case with modulation equations for other integrable systems, hyperbolic data will remain hyperbolic under the evolution, at least until infinite derivatives develop.

UR - http://www.scopus.com/inward/record.url?scp=84990668228&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84990668228&partnerID=8YFLogxK

U2 - 10.1002/cpa.3160481203

DO - 10.1002/cpa.3160481203

M3 - Article

AN - SCOPUS:84990668228

VL - 48

SP - 1369

EP - 1440

JO - Communications on Pure and Applied Mathematics

JF - Communications on Pure and Applied Mathematics

SN - 0010-3640

IS - 12

ER -