Fipronil induces CYP isoforms and cytotoxicity in human hepatocytes

Parikshit C. Das, Yan Cao, Nathan J Cherrington, Ernest Hodgson, Randy L. Rose

Research output: Contribution to journalArticle

78 Citations (Scopus)

Abstract

Recent studies have demonstrated the potential of pesticides to either inhibit or induce xenobiotic metabolizing enzymes in humans. Exposure of human hepatocytes to doses of fipronil (5-amino-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-[(trifluoromethyl) sulfinyl]-1H-pyrazole-3-carbonitrile) ranging from 0.1 to 25 μM resulted in a dose dependent increase in CYP1A1 mRNA expression (3.5 to ∼55-fold) as measured by the branched DNA assay. In a similar manner, CYP3A4 mRNA expression was also induced (10-30-fold), although at the higher doses induction returned to near control levels. CYP2B6 and 3A5 were also induced by fipronil, although at lower levels (2-3-fold). Confirmation of bDNA results were sought through western blotting and/or enzyme activity assays. Western blots using CYP3A4 antibody demonstrated a dose responsive increase from 0.5 to 1 μM followed by decreasing responses at higher concentrations. Similar increases and decreases were observed in CYP3A4-specific activity levels as measured using 6β-hydroxytestosterone formation following incubation with testosterone. Likewise, activity levels for a CYP1A1-specific substrate, luciferin CEE, demonstrated that CYP1A1 enzyme activities were maximally induced by 1 μM fipronil followed by dramatically declining activity measurements at 10 and 25 μM. Cytotoxic effects of fipronil and fipronil sulfone were examined using the adenylate kinase and the trypan blue exclusion assays in HepG2 cells and human hepatocytes. The results indicate both that HepG2 cells and primary human hepatocytes are sensitive to the cytotoxic effects of fipronil. The maximum induction of adenylate kinase was ca. 3-fold greater than the respective controls in HepG2 and 6-10-fold in the case of primary hepatocytes. A significant time- and dose-dependent induction of adenylate kinase activity in HepG2 cells was noted from 0.1 to 12.5 μM fipronil followed by decreasing activities at 25 and 50 μM. For fipronil sulfone, cytotoxic effects increased throughout the dose range. The trypan blue assay indicated that cytotoxic effects contributing to an increase of greater than 10% of control values was indicated at doses above 12.5 μM. However, fipronil sulfone induced cytotoxic effects at lower doses. The possibility that cytotoxic effects were due to apoptosis was indicated by significant time- and dose-dependent induction of caspase-3/7 activity in both HepG2 cells and human hepatocytes. Fipronil mediated activation of caspase-3/7 in concurrence with compromised ATP production and viability are attributed to apoptotic cell death.

Original languageEnglish (US)
Pages (from-to)200-214
Number of pages15
JournalChemico-Biological Interactions
Volume164
Issue number3
DOIs
StatePublished - Dec 15 2006

Fingerprint

Cytotoxicity
Hepatocytes
Protein Isoforms
Hep G2 Cells
Cytochrome P-450 CYP3A
Adenylate Kinase
Cytochrome P-450 CYP1A1
Assays
Caspase 7
Trypan Blue
Enzyme activity
Caspase 3
Hydroxytestosterones
Branched DNA Signal Amplification Assay
Western Blotting
Messenger RNA
Level control
Enzyme Assays
Xenobiotics
Cell death

Keywords

  • Apoptosis
  • CYP1A1
  • CYP2B6
  • CYP3A4
  • Cytotoxicity
  • Fipronil
  • Human hepatic and HepG2 cells

ASJC Scopus subject areas

  • Toxicology

Cite this

Fipronil induces CYP isoforms and cytotoxicity in human hepatocytes. / Das, Parikshit C.; Cao, Yan; Cherrington, Nathan J; Hodgson, Ernest; Rose, Randy L.

In: Chemico-Biological Interactions, Vol. 164, No. 3, 15.12.2006, p. 200-214.

Research output: Contribution to journalArticle

Das, Parikshit C. ; Cao, Yan ; Cherrington, Nathan J ; Hodgson, Ernest ; Rose, Randy L. / Fipronil induces CYP isoforms and cytotoxicity in human hepatocytes. In: Chemico-Biological Interactions. 2006 ; Vol. 164, No. 3. pp. 200-214.
@article{aa034156ebe84cc9a20ecb3d2b76e46c,
title = "Fipronil induces CYP isoforms and cytotoxicity in human hepatocytes",
abstract = "Recent studies have demonstrated the potential of pesticides to either inhibit or induce xenobiotic metabolizing enzymes in humans. Exposure of human hepatocytes to doses of fipronil (5-amino-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-[(trifluoromethyl) sulfinyl]-1H-pyrazole-3-carbonitrile) ranging from 0.1 to 25 μM resulted in a dose dependent increase in CYP1A1 mRNA expression (3.5 to ∼55-fold) as measured by the branched DNA assay. In a similar manner, CYP3A4 mRNA expression was also induced (10-30-fold), although at the higher doses induction returned to near control levels. CYP2B6 and 3A5 were also induced by fipronil, although at lower levels (2-3-fold). Confirmation of bDNA results were sought through western blotting and/or enzyme activity assays. Western blots using CYP3A4 antibody demonstrated a dose responsive increase from 0.5 to 1 μM followed by decreasing responses at higher concentrations. Similar increases and decreases were observed in CYP3A4-specific activity levels as measured using 6β-hydroxytestosterone formation following incubation with testosterone. Likewise, activity levels for a CYP1A1-specific substrate, luciferin CEE, demonstrated that CYP1A1 enzyme activities were maximally induced by 1 μM fipronil followed by dramatically declining activity measurements at 10 and 25 μM. Cytotoxic effects of fipronil and fipronil sulfone were examined using the adenylate kinase and the trypan blue exclusion assays in HepG2 cells and human hepatocytes. The results indicate both that HepG2 cells and primary human hepatocytes are sensitive to the cytotoxic effects of fipronil. The maximum induction of adenylate kinase was ca. 3-fold greater than the respective controls in HepG2 and 6-10-fold in the case of primary hepatocytes. A significant time- and dose-dependent induction of adenylate kinase activity in HepG2 cells was noted from 0.1 to 12.5 μM fipronil followed by decreasing activities at 25 and 50 μM. For fipronil sulfone, cytotoxic effects increased throughout the dose range. The trypan blue assay indicated that cytotoxic effects contributing to an increase of greater than 10{\%} of control values was indicated at doses above 12.5 μM. However, fipronil sulfone induced cytotoxic effects at lower doses. The possibility that cytotoxic effects were due to apoptosis was indicated by significant time- and dose-dependent induction of caspase-3/7 activity in both HepG2 cells and human hepatocytes. Fipronil mediated activation of caspase-3/7 in concurrence with compromised ATP production and viability are attributed to apoptotic cell death.",
keywords = "Apoptosis, CYP1A1, CYP2B6, CYP3A4, Cytotoxicity, Fipronil, Human hepatic and HepG2 cells",
author = "Das, {Parikshit C.} and Yan Cao and Cherrington, {Nathan J} and Ernest Hodgson and Rose, {Randy L.}",
year = "2006",
month = "12",
day = "15",
doi = "10.1016/j.cbi.2006.09.013",
language = "English (US)",
volume = "164",
pages = "200--214",
journal = "Chemico-Biological Interactions",
issn = "0009-2797",
publisher = "Elsevier Ireland Ltd",
number = "3",

}

TY - JOUR

T1 - Fipronil induces CYP isoforms and cytotoxicity in human hepatocytes

AU - Das, Parikshit C.

AU - Cao, Yan

AU - Cherrington, Nathan J

AU - Hodgson, Ernest

AU - Rose, Randy L.

PY - 2006/12/15

Y1 - 2006/12/15

N2 - Recent studies have demonstrated the potential of pesticides to either inhibit or induce xenobiotic metabolizing enzymes in humans. Exposure of human hepatocytes to doses of fipronil (5-amino-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-[(trifluoromethyl) sulfinyl]-1H-pyrazole-3-carbonitrile) ranging from 0.1 to 25 μM resulted in a dose dependent increase in CYP1A1 mRNA expression (3.5 to ∼55-fold) as measured by the branched DNA assay. In a similar manner, CYP3A4 mRNA expression was also induced (10-30-fold), although at the higher doses induction returned to near control levels. CYP2B6 and 3A5 were also induced by fipronil, although at lower levels (2-3-fold). Confirmation of bDNA results were sought through western blotting and/or enzyme activity assays. Western blots using CYP3A4 antibody demonstrated a dose responsive increase from 0.5 to 1 μM followed by decreasing responses at higher concentrations. Similar increases and decreases were observed in CYP3A4-specific activity levels as measured using 6β-hydroxytestosterone formation following incubation with testosterone. Likewise, activity levels for a CYP1A1-specific substrate, luciferin CEE, demonstrated that CYP1A1 enzyme activities were maximally induced by 1 μM fipronil followed by dramatically declining activity measurements at 10 and 25 μM. Cytotoxic effects of fipronil and fipronil sulfone were examined using the adenylate kinase and the trypan blue exclusion assays in HepG2 cells and human hepatocytes. The results indicate both that HepG2 cells and primary human hepatocytes are sensitive to the cytotoxic effects of fipronil. The maximum induction of adenylate kinase was ca. 3-fold greater than the respective controls in HepG2 and 6-10-fold in the case of primary hepatocytes. A significant time- and dose-dependent induction of adenylate kinase activity in HepG2 cells was noted from 0.1 to 12.5 μM fipronil followed by decreasing activities at 25 and 50 μM. For fipronil sulfone, cytotoxic effects increased throughout the dose range. The trypan blue assay indicated that cytotoxic effects contributing to an increase of greater than 10% of control values was indicated at doses above 12.5 μM. However, fipronil sulfone induced cytotoxic effects at lower doses. The possibility that cytotoxic effects were due to apoptosis was indicated by significant time- and dose-dependent induction of caspase-3/7 activity in both HepG2 cells and human hepatocytes. Fipronil mediated activation of caspase-3/7 in concurrence with compromised ATP production and viability are attributed to apoptotic cell death.

AB - Recent studies have demonstrated the potential of pesticides to either inhibit or induce xenobiotic metabolizing enzymes in humans. Exposure of human hepatocytes to doses of fipronil (5-amino-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-[(trifluoromethyl) sulfinyl]-1H-pyrazole-3-carbonitrile) ranging from 0.1 to 25 μM resulted in a dose dependent increase in CYP1A1 mRNA expression (3.5 to ∼55-fold) as measured by the branched DNA assay. In a similar manner, CYP3A4 mRNA expression was also induced (10-30-fold), although at the higher doses induction returned to near control levels. CYP2B6 and 3A5 were also induced by fipronil, although at lower levels (2-3-fold). Confirmation of bDNA results were sought through western blotting and/or enzyme activity assays. Western blots using CYP3A4 antibody demonstrated a dose responsive increase from 0.5 to 1 μM followed by decreasing responses at higher concentrations. Similar increases and decreases were observed in CYP3A4-specific activity levels as measured using 6β-hydroxytestosterone formation following incubation with testosterone. Likewise, activity levels for a CYP1A1-specific substrate, luciferin CEE, demonstrated that CYP1A1 enzyme activities were maximally induced by 1 μM fipronil followed by dramatically declining activity measurements at 10 and 25 μM. Cytotoxic effects of fipronil and fipronil sulfone were examined using the adenylate kinase and the trypan blue exclusion assays in HepG2 cells and human hepatocytes. The results indicate both that HepG2 cells and primary human hepatocytes are sensitive to the cytotoxic effects of fipronil. The maximum induction of adenylate kinase was ca. 3-fold greater than the respective controls in HepG2 and 6-10-fold in the case of primary hepatocytes. A significant time- and dose-dependent induction of adenylate kinase activity in HepG2 cells was noted from 0.1 to 12.5 μM fipronil followed by decreasing activities at 25 and 50 μM. For fipronil sulfone, cytotoxic effects increased throughout the dose range. The trypan blue assay indicated that cytotoxic effects contributing to an increase of greater than 10% of control values was indicated at doses above 12.5 μM. However, fipronil sulfone induced cytotoxic effects at lower doses. The possibility that cytotoxic effects were due to apoptosis was indicated by significant time- and dose-dependent induction of caspase-3/7 activity in both HepG2 cells and human hepatocytes. Fipronil mediated activation of caspase-3/7 in concurrence with compromised ATP production and viability are attributed to apoptotic cell death.

KW - Apoptosis

KW - CYP1A1

KW - CYP2B6

KW - CYP3A4

KW - Cytotoxicity

KW - Fipronil

KW - Human hepatic and HepG2 cells

UR - http://www.scopus.com/inward/record.url?scp=33751174299&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33751174299&partnerID=8YFLogxK

U2 - 10.1016/j.cbi.2006.09.013

DO - 10.1016/j.cbi.2006.09.013

M3 - Article

C2 - 17084830

AN - SCOPUS:33751174299

VL - 164

SP - 200

EP - 214

JO - Chemico-Biological Interactions

JF - Chemico-Biological Interactions

SN - 0009-2797

IS - 3

ER -