Flexible electrode structures for thermo-tunneling applications

Eniko T. Enikov, Carlos Gamez, Shezaan Kanjiyani, Mahdi Ganji, Joshua Gill

Research output: Chapter in Book/Report/Conference proceedingConference contribution


Combined thermionic emission and tunneling of hot electrons (thermo-tunneling) has emerged as a potential new solid-state cooling technology. Practical implementation of thermo-tunneling, however, requires the formation of a nanometer-sized gap spanning macroscopically significant surfaces. Thermo-tunneling of hot electrons across a few-nanometer gap has application to vacuum electronics, flat panel displays, and holds great potential in thermo-electric cooling and energy generation. Development of new thermo-tunneling applications requires creation of a stable nanometer gap between two surfaces. This presentation is focused on our effort to investigate the feasibility of creating such gaps using distributed electro-magnetic forces arising in thin-film flexible structures. Early efforts based on rigid electrodes showed that the effective tunneling approaches 400 square-micrometers, which albeit small, could lead to useful practical systems. In this presentation, we report a theoretical and experimental investigation of a thin-electrode system which could lead to further increase on the effective tunneling area. The device under study consists of a thin membrane collector electrode (anode) suspended over the emitting electrode (cathode). The structure is placed in a vacuum enclosure with an externally generated magnetic field perpendicular to the current flow in the membrane. The resulting Lorentz force is then directed upwards, separating the two surfaces. A mathematical model of the steady-state operation of the device is presented along with predictions of the contact area and tunneling current. Essential output parameters of the model include a central contact area measured by its length (delta) and the thermo-tunneling current. Both parameters are determined as a function of the externally applied external potential and magnetic field. Numerical solutions of the model show two possible operating modes: (1) symmetric deformation with negligibly small current; and (2) asymmetric mode where the B-field controls the current and contact area.

Original languageEnglish (US)
Title of host publicationEnergy Systems Analysis, Thermodynamics and Sustainability; Combustion Science and Engineering; Nanoengineering for Energy
PublisherAmerican Society of Mechanical Engineers (ASME)
Number of pages7
ISBN (Print)9780791854907
StatePublished - 2011
EventASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011 - Denver, CO, United States
Duration: Nov 11 2011Nov 17 2011

Publication series

NameASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011


OtherASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011
CountryUnited States
CityDenver, CO

ASJC Scopus subject areas

  • Mechanical Engineering

Fingerprint Dive into the research topics of 'Flexible electrode structures for thermo-tunneling applications'. Together they form a unique fingerprint.

Cite this