## Abstract

The actual failure times of individual components are usually unavailable in many applications. Instead, only aggregate failure-time data are collected by actual users, due to technical and/or economic reasons. When dealing with such data for reliability estimation, practitioners often face the challenges of selecting the underlying failure-time distributions and the corresponding statistical inference methods. So far, only the exponential, normal, gamma and inverse Gaussian distributions have been used in analyzing aggregate failure-time data, due to these distributions having closed-form expressions for such data. However, the limited choices of probability distributions cannot satisfy extensive needs in a variety of engineering applications. PHase-type (PH) distributions are robust and flexible in modeling failure-time data, as they can mimic a large collection of probability distributions of non-negative random variables arbitrarily closely by adjusting the model structures. In this article, PH distributions are utilized, for the first time, in reliability estimation based on aggregate failure-time data. A Maximum Likelihood Estimation (MLE) method and a Bayesian alternative are developed. For the MLE method, an Expectation-Maximization algorithm is developed for parameter estimation, and the corresponding Fisher information is used to construct the confidence intervals for the quantities of interest. For the Bayesian method, a procedure for performing point and interval estimation is also introduced. Numerical examples show that the proposed PH-based reliability estimation methods are quite flexible and alleviate the burden of selecting a probability distribution when the underlying failure-time distribution is general or even unknown.

Original language | English (US) |
---|---|

Pages (from-to) | 101-115 |

Number of pages | 15 |

Journal | IISE Transactions |

Volume | 53 |

Issue number | 1 |

DOIs | |

State | Published - Jan 2 2021 |

## Keywords

- Aggregate failure-time data
- Bayesian method
- maximum likelihood estimation
- phase-type distributions

## ASJC Scopus subject areas

- Industrial and Manufacturing Engineering