## Abstract

Constant head borehole infiltration tests are widely used for the in situ evaluation of saturated hydraulic conductivities of unsaturated soils above the water table. The formulae employed in analysing the results of such tests disregard the fact that some of the infiltrating water may flow under unsaturated conditions. Instead, these formulae are based on various approximations of the classical free surface theory which treats the flow region as if it were fully saturated and enclosed within a distinct envelope, the so-called 'free surface'. A finite element model capable of solving free surface problems is used to examine the mathematical accuracy of the borehole infiltration formulae. The results show that in the hypothetical case where unsaturated flow does not exist, the approximate formulae are reasonably accurate within·a practical range of borehole conditions. To see what happens under conditions closer to those actually encountered in the field, the effect of unsaturated flow on borehole infiltration is investigated by means of two different numerical models: a mixed explicit-implicit finite element model, and a mixed explicit-implicit integrated finite difference model. Both of these models give nearly identical results; however, the integrated finite difference model is considerably faster than the finite element model. The relatively low computational efficiency of the finite element scheme is attributed to the large number of operations required in order to re-evaluate the conductivity (stiffness) matrix at each iteration in this highly non-linear saturated-unsaturated flow problem. The saturated-unsaturated analysis demonstrates that the classical free surface approach provides a distorted picture of the flow pattern in the soil. Contrary to what one would expect on the basis of this theory, only a finite region of the soil in the immediate vicinity of the borehole is saturated, whereas a significant percentage of the flow takes place under unsaturated conditions. As a consequence of disregarding unsaturated flow, the available formulae may underestimate the saturated hydraulic conductivity of fine grained soils by a factor of two, three, or more. Our saturated-unsaturated analysis leads to an improved design of borehole infiltration tests and a more accurate method for interpreting the results of such tests. The analysis also shows how one can predict the steady state rate of infiltration from data collected during the early transient period of the test.

Original language | English (US) |
---|---|

Pages (from-to) | 111-116 |

Number of pages | 6 |

Journal | Advances in Water Resources |

Volume | 5 |

Issue number | 2 |

DOIs | |

State | Published - Jun 1982 |

## ASJC Scopus subject areas

- Water Science and Technology