### Abstract

Constant head borehole infiltration tests are widely used for the in situ evaluation of saturated hydraulic conductivities of unsaturated soils above the water table. The formulae employed in analysing the results of such tests disregard the fact that some of the infiltrating water may flow under unsaturated conditions. Instead, these formulae are based on various approximations of the classical free surface theory which treats the flow region as if it were fully saturated and enclosed within a distinct envelope, the so-called 'free surface'. A finite element model capable of solving free surface problems is used to examine the mathematical accuracy of the borehole infiltration formulae. The results show that in the hypothetical case where unsaturated flow does not exist, the approximate formulae are reasonably accurate within·a practical range of borehole conditions. To see what happens under conditions closer to those actually encountered in the field, the effect of unsaturated flow on borehole infiltration is investigated by means of two different numerical models: a mixed explicit-implicit finite element model, and a mixed explicit-implicit integrated finite difference model. Both of these models give nearly identical results; however, the integrated finite difference model is considerably faster than the finite element model. The relatively low computational efficiency of the finite element scheme is attributed to the large number of operations required in order to re-evaluate the conductivity (stiffness) matrix at each iteration in this highly non-linear saturated-unsaturated flow problem. The saturated-unsaturated analysis demonstrates that the classical free surface approach provides a distorted picture of the flow pattern in the soil. Contrary to what one would expect on the basis of this theory, only a finite region of the soil in the immediate vicinity of the borehole is saturated, whereas a significant percentage of the flow takes place under unsaturated conditions. As a consequence of disregarding unsaturated flow, the available formulae may underestimate the saturated hydraulic conductivity of fine grained soils by a factor of two, three, or more. Our saturated-unsaturated analysis leads to an improved design of borehole infiltration tests and a more accurate method for interpreting the results of such tests. The analysis also shows how one can predict the steady state rate of infiltration from data collected during the early transient period of the test.

Original language | English (US) |
---|---|

Pages (from-to) | 111-116 |

Number of pages | 6 |

Journal | Advances in Water Resources |

Volume | 5 |

Issue number | 2 |

DOIs | |

State | Published - 1982 |

### Fingerprint

### ASJC Scopus subject areas

- Earth-Surface Processes

### Cite this

**Free surface and saturated-unsaturated analyses of borehole infiltration tests above the water table.** / Stephens, D. B.; Neuman, Shlomo P.

Research output: Contribution to journal › Article

*Advances in Water Resources*, vol. 5, no. 2, pp. 111-116. https://doi.org/10.1016/0309-1708(82)90053-7

}

TY - JOUR

T1 - Free surface and saturated-unsaturated analyses of borehole infiltration tests above the water table

AU - Stephens, D. B.

AU - Neuman, Shlomo P

PY - 1982

Y1 - 1982

N2 - Constant head borehole infiltration tests are widely used for the in situ evaluation of saturated hydraulic conductivities of unsaturated soils above the water table. The formulae employed in analysing the results of such tests disregard the fact that some of the infiltrating water may flow under unsaturated conditions. Instead, these formulae are based on various approximations of the classical free surface theory which treats the flow region as if it were fully saturated and enclosed within a distinct envelope, the so-called 'free surface'. A finite element model capable of solving free surface problems is used to examine the mathematical accuracy of the borehole infiltration formulae. The results show that in the hypothetical case where unsaturated flow does not exist, the approximate formulae are reasonably accurate within·a practical range of borehole conditions. To see what happens under conditions closer to those actually encountered in the field, the effect of unsaturated flow on borehole infiltration is investigated by means of two different numerical models: a mixed explicit-implicit finite element model, and a mixed explicit-implicit integrated finite difference model. Both of these models give nearly identical results; however, the integrated finite difference model is considerably faster than the finite element model. The relatively low computational efficiency of the finite element scheme is attributed to the large number of operations required in order to re-evaluate the conductivity (stiffness) matrix at each iteration in this highly non-linear saturated-unsaturated flow problem. The saturated-unsaturated analysis demonstrates that the classical free surface approach provides a distorted picture of the flow pattern in the soil. Contrary to what one would expect on the basis of this theory, only a finite region of the soil in the immediate vicinity of the borehole is saturated, whereas a significant percentage of the flow takes place under unsaturated conditions. As a consequence of disregarding unsaturated flow, the available formulae may underestimate the saturated hydraulic conductivity of fine grained soils by a factor of two, three, or more. Our saturated-unsaturated analysis leads to an improved design of borehole infiltration tests and a more accurate method for interpreting the results of such tests. The analysis also shows how one can predict the steady state rate of infiltration from data collected during the early transient period of the test.

AB - Constant head borehole infiltration tests are widely used for the in situ evaluation of saturated hydraulic conductivities of unsaturated soils above the water table. The formulae employed in analysing the results of such tests disregard the fact that some of the infiltrating water may flow under unsaturated conditions. Instead, these formulae are based on various approximations of the classical free surface theory which treats the flow region as if it were fully saturated and enclosed within a distinct envelope, the so-called 'free surface'. A finite element model capable of solving free surface problems is used to examine the mathematical accuracy of the borehole infiltration formulae. The results show that in the hypothetical case where unsaturated flow does not exist, the approximate formulae are reasonably accurate within·a practical range of borehole conditions. To see what happens under conditions closer to those actually encountered in the field, the effect of unsaturated flow on borehole infiltration is investigated by means of two different numerical models: a mixed explicit-implicit finite element model, and a mixed explicit-implicit integrated finite difference model. Both of these models give nearly identical results; however, the integrated finite difference model is considerably faster than the finite element model. The relatively low computational efficiency of the finite element scheme is attributed to the large number of operations required in order to re-evaluate the conductivity (stiffness) matrix at each iteration in this highly non-linear saturated-unsaturated flow problem. The saturated-unsaturated analysis demonstrates that the classical free surface approach provides a distorted picture of the flow pattern in the soil. Contrary to what one would expect on the basis of this theory, only a finite region of the soil in the immediate vicinity of the borehole is saturated, whereas a significant percentage of the flow takes place under unsaturated conditions. As a consequence of disregarding unsaturated flow, the available formulae may underestimate the saturated hydraulic conductivity of fine grained soils by a factor of two, three, or more. Our saturated-unsaturated analysis leads to an improved design of borehole infiltration tests and a more accurate method for interpreting the results of such tests. The analysis also shows how one can predict the steady state rate of infiltration from data collected during the early transient period of the test.

UR - http://www.scopus.com/inward/record.url?scp=0019924596&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0019924596&partnerID=8YFLogxK

U2 - 10.1016/0309-1708(82)90053-7

DO - 10.1016/0309-1708(82)90053-7

M3 - Article

AN - SCOPUS:0019924596

VL - 5

SP - 111

EP - 116

JO - Advances in Water Resources

JF - Advances in Water Resources

SN - 0309-1708

IS - 2

ER -