Gas-phase synthesis, submillimeter spectra, and precise structure of monomeric, solvent-free CuCH3

Douglas B. Grotjahn, De Wayne T. Halfen, Lucy M. Ziurys, Andrew L. Cooksy

Research output: Contribution to journalArticle

21 Scopus citations

Abstract

The most-studied organocopper, methylcopper (CH3Cu), has been synthesized for the first time as a monomer, free of other ligands or coordinated solvent, and detected using millimeter-wave rotational spectroscopy. The molecule was created in the gas phase by the reaction of copper vapor and several different precursors, including CH4 and tetramethylsilane. An obvious symmetric top pattern was observed, indicative of C3v symmetry. For confirmation, rotational spectra of four isotopically substituted species, 65Cu12CH3, 63Cu 12CD3, 63Cu13CH3, and 65Cu13CH3, were recorded as well, following large-scale syntheses of specifically labeled precursors. From this data set, accurate spectroscopic constants and a structure for CH3Cu were derived. The rm(2) geometry shows the shortest alkyl carbon-copper(I) bond length known (1.8809 Å) and a rather large H-C-H angle in the methyl group (109.88°). The measured rotational and distortion constants are well reproduced by QCISD calculations. This study should allow further refinement of theoretical calculations on methylcopper and other organocopper derivatives, which are valuable synthetic intermediates in organic chemistry.

Original languageEnglish (US)
Pages (from-to)12621-12627
Number of pages7
JournalJournal of the American Chemical Society
Volume126
Issue number39
DOIs
StatePublished - Oct 6 2004

ASJC Scopus subject areas

  • Catalysis
  • Chemistry(all)
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint Dive into the research topics of 'Gas-phase synthesis, submillimeter spectra, and precise structure of monomeric, solvent-free CuCH<sub>3</sub>'. Together they form a unique fingerprint.

  • Cite this