Geomorphological Evidence for Shallow Ice in the Southern Hemisphere of Mars

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

The localized loss of near-surface excess ice on Mars by sublimation (and perhaps melting) can produce thermokarstic collapse features such as expanded craters and scalloped depressions, which can be indicators of the preservation of shallow ice. We demonstrate this by identifying High Resolution Imaging Science Experiment images containing expanded craters south of Arcadia Planitia (25–40°N) and observe a spatial correlation between regions with thermokarst and the lowest-latitude ice-exposing impact craters identified to date. In addition to widespread thermokarst north of ~35°N, we observe localized thermokarst features that we interpret as patchy ice as far south as 25°N. Few ice-exposing craters have been identified in the southern hemisphere of Mars since they are easier to find in dusty, high-albedo regions, but the relationship among expanded craters, ice-exposing impacts, and the predicted ice table boundary in Arcadia Planitia allows us to extend this thermokarst survey into the southern midlatitudes (30–60°S) to infer the presence of ice today. Our observations suggest that the southern hemisphere excess ice boundary lies at ~45°S regionally. At lower latitudes, some isolated terrains (e.g., crater fill and pole-facing slopes) also contain thermokarst, suggesting local ice preservation. We look for spatial relationships between our results and surface properties (e.g., slope and neutron spectrometer water ice concentration) and ice table models to understand the observed ice distribution. Our results show trends with thermal inertia and dust cover and are broadly consistent with ice deposition during a period with a higher relative humidity than today. Shallow, lower-latitude ice deposits are of interest for future exploration.

Original languageEnglish (US)
Pages (from-to)262-277
Number of pages16
JournalJournal of Geophysical Research: Planets
Volume123
Issue number1
DOIs
StatePublished - Jan 1 2018

Fingerprint

Ice
Southern Hemisphere
mars
Mars
ice
thermokarst
craters
crater
tropical regions
Neutron spectrometers
sublimation
slopes
neutron spectrometers
Facings
temperate regions
Sublimation
spectrometers
albedo
melting
inertia

Keywords

  • expanded craters
  • geomorphology
  • shallow ice
  • thermokarst

ASJC Scopus subject areas

  • Geophysics
  • Oceanography
  • Forestry
  • Aquatic Science
  • Ecology
  • Condensed Matter Physics
  • Water Science and Technology
  • Soil Science
  • Geochemistry and Petrology
  • Earth-Surface Processes
  • Physical and Theoretical Chemistry
  • Polymers and Plastics
  • Atmospheric Science
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science
  • Materials Chemistry
  • Palaeontology

Cite this

Geomorphological Evidence for Shallow Ice in the Southern Hemisphere of Mars. / Viola, D.; McEwen, Alfred S.

In: Journal of Geophysical Research: Planets, Vol. 123, No. 1, 01.01.2018, p. 262-277.

Research output: Contribution to journalArticle

@article{98f77f84ff6b4dc3aa9e4a5540d89f06,
title = "Geomorphological Evidence for Shallow Ice in the Southern Hemisphere of Mars",
abstract = "The localized loss of near-surface excess ice on Mars by sublimation (and perhaps melting) can produce thermokarstic collapse features such as expanded craters and scalloped depressions, which can be indicators of the preservation of shallow ice. We demonstrate this by identifying High Resolution Imaging Science Experiment images containing expanded craters south of Arcadia Planitia (25–40°N) and observe a spatial correlation between regions with thermokarst and the lowest-latitude ice-exposing impact craters identified to date. In addition to widespread thermokarst north of ~35°N, we observe localized thermokarst features that we interpret as patchy ice as far south as 25°N. Few ice-exposing craters have been identified in the southern hemisphere of Mars since they are easier to find in dusty, high-albedo regions, but the relationship among expanded craters, ice-exposing impacts, and the predicted ice table boundary in Arcadia Planitia allows us to extend this thermokarst survey into the southern midlatitudes (30–60°S) to infer the presence of ice today. Our observations suggest that the southern hemisphere excess ice boundary lies at ~45°S regionally. At lower latitudes, some isolated terrains (e.g., crater fill and pole-facing slopes) also contain thermokarst, suggesting local ice preservation. We look for spatial relationships between our results and surface properties (e.g., slope and neutron spectrometer water ice concentration) and ice table models to understand the observed ice distribution. Our results show trends with thermal inertia and dust cover and are broadly consistent with ice deposition during a period with a higher relative humidity than today. Shallow, lower-latitude ice deposits are of interest for future exploration.",
keywords = "expanded craters, geomorphology, shallow ice, thermokarst",
author = "D. Viola and McEwen, {Alfred S.}",
year = "2018",
month = "1",
day = "1",
doi = "10.1002/2017JE005366",
language = "English (US)",
volume = "123",
pages = "262--277",
journal = "Journal of Geophysical Research: Space Physics",
issn = "2169-9380",
publisher = "Wiley-Blackwell",
number = "1",

}

TY - JOUR

T1 - Geomorphological Evidence for Shallow Ice in the Southern Hemisphere of Mars

AU - Viola, D.

AU - McEwen, Alfred S.

PY - 2018/1/1

Y1 - 2018/1/1

N2 - The localized loss of near-surface excess ice on Mars by sublimation (and perhaps melting) can produce thermokarstic collapse features such as expanded craters and scalloped depressions, which can be indicators of the preservation of shallow ice. We demonstrate this by identifying High Resolution Imaging Science Experiment images containing expanded craters south of Arcadia Planitia (25–40°N) and observe a spatial correlation between regions with thermokarst and the lowest-latitude ice-exposing impact craters identified to date. In addition to widespread thermokarst north of ~35°N, we observe localized thermokarst features that we interpret as patchy ice as far south as 25°N. Few ice-exposing craters have been identified in the southern hemisphere of Mars since they are easier to find in dusty, high-albedo regions, but the relationship among expanded craters, ice-exposing impacts, and the predicted ice table boundary in Arcadia Planitia allows us to extend this thermokarst survey into the southern midlatitudes (30–60°S) to infer the presence of ice today. Our observations suggest that the southern hemisphere excess ice boundary lies at ~45°S regionally. At lower latitudes, some isolated terrains (e.g., crater fill and pole-facing slopes) also contain thermokarst, suggesting local ice preservation. We look for spatial relationships between our results and surface properties (e.g., slope and neutron spectrometer water ice concentration) and ice table models to understand the observed ice distribution. Our results show trends with thermal inertia and dust cover and are broadly consistent with ice deposition during a period with a higher relative humidity than today. Shallow, lower-latitude ice deposits are of interest for future exploration.

AB - The localized loss of near-surface excess ice on Mars by sublimation (and perhaps melting) can produce thermokarstic collapse features such as expanded craters and scalloped depressions, which can be indicators of the preservation of shallow ice. We demonstrate this by identifying High Resolution Imaging Science Experiment images containing expanded craters south of Arcadia Planitia (25–40°N) and observe a spatial correlation between regions with thermokarst and the lowest-latitude ice-exposing impact craters identified to date. In addition to widespread thermokarst north of ~35°N, we observe localized thermokarst features that we interpret as patchy ice as far south as 25°N. Few ice-exposing craters have been identified in the southern hemisphere of Mars since they are easier to find in dusty, high-albedo regions, but the relationship among expanded craters, ice-exposing impacts, and the predicted ice table boundary in Arcadia Planitia allows us to extend this thermokarst survey into the southern midlatitudes (30–60°S) to infer the presence of ice today. Our observations suggest that the southern hemisphere excess ice boundary lies at ~45°S regionally. At lower latitudes, some isolated terrains (e.g., crater fill and pole-facing slopes) also contain thermokarst, suggesting local ice preservation. We look for spatial relationships between our results and surface properties (e.g., slope and neutron spectrometer water ice concentration) and ice table models to understand the observed ice distribution. Our results show trends with thermal inertia and dust cover and are broadly consistent with ice deposition during a period with a higher relative humidity than today. Shallow, lower-latitude ice deposits are of interest for future exploration.

KW - expanded craters

KW - geomorphology

KW - shallow ice

KW - thermokarst

UR - http://www.scopus.com/inward/record.url?scp=85041083421&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85041083421&partnerID=8YFLogxK

U2 - 10.1002/2017JE005366

DO - 10.1002/2017JE005366

M3 - Article

AN - SCOPUS:85041083421

VL - 123

SP - 262

EP - 277

JO - Journal of Geophysical Research: Space Physics

JF - Journal of Geophysical Research: Space Physics

SN - 2169-9380

IS - 1

ER -