Gradual tolerance of metabolic activity is produced in mesolimbic regions by chronic cocaine treatment, while subsequent cocaine challenge activates extrapyramidal regions of rat brain

Ronald P Hammer, E. S. Cooke

Research output: Contribution to journalArticle

27 Citations (Scopus)

Abstract

Acute administration of cocaine is known to enhance extracellular dopamine levels in the striatum and to activate immediate-early gene expression in striatal neurons. Regional cerebral metabolic rate for glucose (rCMR(glc)) reportedly increases in extrapyramidal and mesolimbic brain regions in response to acute cocaine treatment. However, chronic administration attenuates the cocaine-induced enhancement of regional dopamine response and the induction of immediate-early gene expression in these regions. Chronic treatment also produces tolerance to cocaine's reinforcing effects. Thus, differential responses to cocaine occur with increasing length of treatment. Therefore, we examined the time course of effects of repeated daily cocaine treatment on rCMR(glc) in rat brain. Acute administration of 10 mg/kg cocaine slightly increased rCMR(glc) in mesolimbic and extrapyramidal regions. However, no significant effects were observed until more than 7 d of treatment, whereupon rCMR(glc) was reduced compared to saline treatment in the infralimbic portion of the medial prefrontal cortex, nucleus accumbens, olfactory tubercle, habenula, amygdala, and a few other brain regions. In contrast, after 13 d of 10 mg/kg cocaine treatment, challenge with 30 mg/kg cocaine increased rCMR(glc) in the striatum, globus pallidus, entopeduncular nucleus, subthalamus, substantia nigra pars reticulata, and a few other regions without affecting limbic or mesolimbic regions. Thus, repeated daily treatment with a low dose of cocaine gradually decreased metabolic activity particularly in mesolimbic regions. Subsequent treatment with a higher dose produced metabolic activation mostly in extrapyramidal regions. This effect of chronic treatment could represent tolerance to the initial metabolic response, which can be replicated thereafter but only by increasing the drug dose. These results suggest that tolerance to the metabolic effects of cocaine in selective mesolimbic circuits may contribute to the development of behavioral dependence with repeated exposure.

Original languageEnglish (US)
Pages (from-to)4289-4298
Number of pages10
JournalJournal of Neuroscience
Volume14
Issue number7
StatePublished - Jul 1994
Externally publishedYes

Fingerprint

Cocaine
Brain
Glucose
Immediate-Early Genes
Dopamine
Entopeduncular Nucleus
Subthalamus
Habenula
Gene Expression
Corpus Striatum
Globus Pallidus
Nucleus Accumbens
Amygdala
Prefrontal Cortex
Neurons

Keywords

  • 2-deoxyglucose
  • chronic cocaine
  • dependence
  • psychostimulant activation
  • regional cerebral metabolic rate
  • tolerance

ASJC Scopus subject areas

  • Neuroscience(all)

Cite this

@article{d8c15c26e9ff465db98c8126e1cc2453,
title = "Gradual tolerance of metabolic activity is produced in mesolimbic regions by chronic cocaine treatment, while subsequent cocaine challenge activates extrapyramidal regions of rat brain",
abstract = "Acute administration of cocaine is known to enhance extracellular dopamine levels in the striatum and to activate immediate-early gene expression in striatal neurons. Regional cerebral metabolic rate for glucose (rCMR(glc)) reportedly increases in extrapyramidal and mesolimbic brain regions in response to acute cocaine treatment. However, chronic administration attenuates the cocaine-induced enhancement of regional dopamine response and the induction of immediate-early gene expression in these regions. Chronic treatment also produces tolerance to cocaine's reinforcing effects. Thus, differential responses to cocaine occur with increasing length of treatment. Therefore, we examined the time course of effects of repeated daily cocaine treatment on rCMR(glc) in rat brain. Acute administration of 10 mg/kg cocaine slightly increased rCMR(glc) in mesolimbic and extrapyramidal regions. However, no significant effects were observed until more than 7 d of treatment, whereupon rCMR(glc) was reduced compared to saline treatment in the infralimbic portion of the medial prefrontal cortex, nucleus accumbens, olfactory tubercle, habenula, amygdala, and a few other brain regions. In contrast, after 13 d of 10 mg/kg cocaine treatment, challenge with 30 mg/kg cocaine increased rCMR(glc) in the striatum, globus pallidus, entopeduncular nucleus, subthalamus, substantia nigra pars reticulata, and a few other regions without affecting limbic or mesolimbic regions. Thus, repeated daily treatment with a low dose of cocaine gradually decreased metabolic activity particularly in mesolimbic regions. Subsequent treatment with a higher dose produced metabolic activation mostly in extrapyramidal regions. This effect of chronic treatment could represent tolerance to the initial metabolic response, which can be replicated thereafter but only by increasing the drug dose. These results suggest that tolerance to the metabolic effects of cocaine in selective mesolimbic circuits may contribute to the development of behavioral dependence with repeated exposure.",
keywords = "2-deoxyglucose, chronic cocaine, dependence, psychostimulant activation, regional cerebral metabolic rate, tolerance",
author = "Hammer, {Ronald P} and Cooke, {E. S.}",
year = "1994",
month = "7",
language = "English (US)",
volume = "14",
pages = "4289--4298",
journal = "Journal of Neuroscience",
issn = "0270-6474",
publisher = "Society for Neuroscience",
number = "7",

}

TY - JOUR

T1 - Gradual tolerance of metabolic activity is produced in mesolimbic regions by chronic cocaine treatment, while subsequent cocaine challenge activates extrapyramidal regions of rat brain

AU - Hammer, Ronald P

AU - Cooke, E. S.

PY - 1994/7

Y1 - 1994/7

N2 - Acute administration of cocaine is known to enhance extracellular dopamine levels in the striatum and to activate immediate-early gene expression in striatal neurons. Regional cerebral metabolic rate for glucose (rCMR(glc)) reportedly increases in extrapyramidal and mesolimbic brain regions in response to acute cocaine treatment. However, chronic administration attenuates the cocaine-induced enhancement of regional dopamine response and the induction of immediate-early gene expression in these regions. Chronic treatment also produces tolerance to cocaine's reinforcing effects. Thus, differential responses to cocaine occur with increasing length of treatment. Therefore, we examined the time course of effects of repeated daily cocaine treatment on rCMR(glc) in rat brain. Acute administration of 10 mg/kg cocaine slightly increased rCMR(glc) in mesolimbic and extrapyramidal regions. However, no significant effects were observed until more than 7 d of treatment, whereupon rCMR(glc) was reduced compared to saline treatment in the infralimbic portion of the medial prefrontal cortex, nucleus accumbens, olfactory tubercle, habenula, amygdala, and a few other brain regions. In contrast, after 13 d of 10 mg/kg cocaine treatment, challenge with 30 mg/kg cocaine increased rCMR(glc) in the striatum, globus pallidus, entopeduncular nucleus, subthalamus, substantia nigra pars reticulata, and a few other regions without affecting limbic or mesolimbic regions. Thus, repeated daily treatment with a low dose of cocaine gradually decreased metabolic activity particularly in mesolimbic regions. Subsequent treatment with a higher dose produced metabolic activation mostly in extrapyramidal regions. This effect of chronic treatment could represent tolerance to the initial metabolic response, which can be replicated thereafter but only by increasing the drug dose. These results suggest that tolerance to the metabolic effects of cocaine in selective mesolimbic circuits may contribute to the development of behavioral dependence with repeated exposure.

AB - Acute administration of cocaine is known to enhance extracellular dopamine levels in the striatum and to activate immediate-early gene expression in striatal neurons. Regional cerebral metabolic rate for glucose (rCMR(glc)) reportedly increases in extrapyramidal and mesolimbic brain regions in response to acute cocaine treatment. However, chronic administration attenuates the cocaine-induced enhancement of regional dopamine response and the induction of immediate-early gene expression in these regions. Chronic treatment also produces tolerance to cocaine's reinforcing effects. Thus, differential responses to cocaine occur with increasing length of treatment. Therefore, we examined the time course of effects of repeated daily cocaine treatment on rCMR(glc) in rat brain. Acute administration of 10 mg/kg cocaine slightly increased rCMR(glc) in mesolimbic and extrapyramidal regions. However, no significant effects were observed until more than 7 d of treatment, whereupon rCMR(glc) was reduced compared to saline treatment in the infralimbic portion of the medial prefrontal cortex, nucleus accumbens, olfactory tubercle, habenula, amygdala, and a few other brain regions. In contrast, after 13 d of 10 mg/kg cocaine treatment, challenge with 30 mg/kg cocaine increased rCMR(glc) in the striatum, globus pallidus, entopeduncular nucleus, subthalamus, substantia nigra pars reticulata, and a few other regions without affecting limbic or mesolimbic regions. Thus, repeated daily treatment with a low dose of cocaine gradually decreased metabolic activity particularly in mesolimbic regions. Subsequent treatment with a higher dose produced metabolic activation mostly in extrapyramidal regions. This effect of chronic treatment could represent tolerance to the initial metabolic response, which can be replicated thereafter but only by increasing the drug dose. These results suggest that tolerance to the metabolic effects of cocaine in selective mesolimbic circuits may contribute to the development of behavioral dependence with repeated exposure.

KW - 2-deoxyglucose

KW - chronic cocaine

KW - dependence

KW - psychostimulant activation

KW - regional cerebral metabolic rate

KW - tolerance

UR - http://www.scopus.com/inward/record.url?scp=0028286480&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0028286480&partnerID=8YFLogxK

M3 - Article

C2 - 8027779

AN - SCOPUS:0028286480

VL - 14

SP - 4289

EP - 4298

JO - Journal of Neuroscience

JF - Journal of Neuroscience

SN - 0270-6474

IS - 7

ER -