High-performance hole-transport layers for polymer light-emitting diodes. Implementation of organosiloxane cross-linking chemistry in polymeric electroluminescent devices

He Yan, Paul Lee, Neal R Armstrong, Amy Graham, Guennadi A. Evmenenko, Pulak Dutta, Tobin J. Marks

Research output: Contribution to journalArticle

265 Citations (Scopus)

Abstract

This contribution describes an organosiloxane cross-linking approach to robust, efficient, adherent hole-transport layers (HTLs) for polymer light-emitting diodes (PLEDs). An example is 4,4′-bis[(p- trichlorosilylpropylphenyl)phenylamino]biphenyl (TPDSi2), which combines the hole-transporting efficiency of N,N-diphenyl-N,N-bis(3- methylphenyl)-1,1-biphenyl)-4,4-diamine) (TPD, prototypical small-molecule HTL material) and the strong cross-linking/densification tendencies of organosilanol groups. Covalent chemical bonding of TPDSi2 to PLED anodes (e.g., indium tin oxide, ITO) and its self-cross-linking enable fabrication of three generations of insoluble PLED HTLs: (1) self-assembled monolayers (SAMs) of TPDSi2 on ITO; (2) cross-linked blend networks consisting of TPDSi2 + a hole transporting polymer (e.g., poly(9,9-dioctylfluorene- co-N-(4-(3-methylpropyl))diphenylamine), TFB) on ITO; (3) TPDSi2 + TFB blends on ITO substrates precoated with a conventional PLED HTL, poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS). PLED devices fabricated using these new HTLs exhibit comparable or superior performance vs comparable devices based on PEDOT-PSS alone. With these new HTLs, current efficiencies as high as ∼17 cd/A and luminances as high as ∼140,000 cd/m2 have been achieved. Further experiments demonstrate that not only do these HTLs enhance PLED anode hole injection but they also exhibit significantly greater electron-blocking capacity than PEDOT-PSS. The present organosiloxane HTL approach offers many other attractions such as convenience of fabrication, flexibility in choosing HTL components, and reduced HTL-induced luminescence quenching, and can be applied as a general strategy to enhance PLED performance.

Original languageEnglish (US)
Pages (from-to)3172-3183
Number of pages12
JournalJournal of the American Chemical Society
Volume127
Issue number9
DOIs
StatePublished - Mar 9 2005

Fingerprint

Luminescent devices
Light emitting diodes
Polymers
Light
Equipment and Supplies
Tin oxides
Indium
Anodes
Electrodes
Diphenylamine
Fabrication
Diamines
Self assembled monolayers
Temperature programmed desorption
Luminescence
Densification
Luminance
Quenching
Electrons
Molecules

ASJC Scopus subject areas

  • Chemistry(all)

Cite this

High-performance hole-transport layers for polymer light-emitting diodes. Implementation of organosiloxane cross-linking chemistry in polymeric electroluminescent devices. / Yan, He; Lee, Paul; Armstrong, Neal R; Graham, Amy; Evmenenko, Guennadi A.; Dutta, Pulak; Marks, Tobin J.

In: Journal of the American Chemical Society, Vol. 127, No. 9, 09.03.2005, p. 3172-3183.

Research output: Contribution to journalArticle

@article{205abf2be04140a5a55db550f395521c,
title = "High-performance hole-transport layers for polymer light-emitting diodes. Implementation of organosiloxane cross-linking chemistry in polymeric electroluminescent devices",
abstract = "This contribution describes an organosiloxane cross-linking approach to robust, efficient, adherent hole-transport layers (HTLs) for polymer light-emitting diodes (PLEDs). An example is 4,4′-bis[(p- trichlorosilylpropylphenyl)phenylamino]biphenyl (TPDSi2), which combines the hole-transporting efficiency of N,N-diphenyl-N,N-bis(3- methylphenyl)-1,1-biphenyl)-4,4-diamine) (TPD, prototypical small-molecule HTL material) and the strong cross-linking/densification tendencies of organosilanol groups. Covalent chemical bonding of TPDSi2 to PLED anodes (e.g., indium tin oxide, ITO) and its self-cross-linking enable fabrication of three generations of insoluble PLED HTLs: (1) self-assembled monolayers (SAMs) of TPDSi2 on ITO; (2) cross-linked blend networks consisting of TPDSi2 + a hole transporting polymer (e.g., poly(9,9-dioctylfluorene- co-N-(4-(3-methylpropyl))diphenylamine), TFB) on ITO; (3) TPDSi2 + TFB blends on ITO substrates precoated with a conventional PLED HTL, poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS). PLED devices fabricated using these new HTLs exhibit comparable or superior performance vs comparable devices based on PEDOT-PSS alone. With these new HTLs, current efficiencies as high as ∼17 cd/A and luminances as high as ∼140,000 cd/m2 have been achieved. Further experiments demonstrate that not only do these HTLs enhance PLED anode hole injection but they also exhibit significantly greater electron-blocking capacity than PEDOT-PSS. The present organosiloxane HTL approach offers many other attractions such as convenience of fabrication, flexibility in choosing HTL components, and reduced HTL-induced luminescence quenching, and can be applied as a general strategy to enhance PLED performance.",
author = "He Yan and Paul Lee and Armstrong, {Neal R} and Amy Graham and Evmenenko, {Guennadi A.} and Pulak Dutta and Marks, {Tobin J.}",
year = "2005",
month = "3",
day = "9",
doi = "10.1021/ja044455q",
language = "English (US)",
volume = "127",
pages = "3172--3183",
journal = "Journal of the American Chemical Society",
issn = "0002-7863",
publisher = "American Chemical Society",
number = "9",

}

TY - JOUR

T1 - High-performance hole-transport layers for polymer light-emitting diodes. Implementation of organosiloxane cross-linking chemistry in polymeric electroluminescent devices

AU - Yan, He

AU - Lee, Paul

AU - Armstrong, Neal R

AU - Graham, Amy

AU - Evmenenko, Guennadi A.

AU - Dutta, Pulak

AU - Marks, Tobin J.

PY - 2005/3/9

Y1 - 2005/3/9

N2 - This contribution describes an organosiloxane cross-linking approach to robust, efficient, adherent hole-transport layers (HTLs) for polymer light-emitting diodes (PLEDs). An example is 4,4′-bis[(p- trichlorosilylpropylphenyl)phenylamino]biphenyl (TPDSi2), which combines the hole-transporting efficiency of N,N-diphenyl-N,N-bis(3- methylphenyl)-1,1-biphenyl)-4,4-diamine) (TPD, prototypical small-molecule HTL material) and the strong cross-linking/densification tendencies of organosilanol groups. Covalent chemical bonding of TPDSi2 to PLED anodes (e.g., indium tin oxide, ITO) and its self-cross-linking enable fabrication of three generations of insoluble PLED HTLs: (1) self-assembled monolayers (SAMs) of TPDSi2 on ITO; (2) cross-linked blend networks consisting of TPDSi2 + a hole transporting polymer (e.g., poly(9,9-dioctylfluorene- co-N-(4-(3-methylpropyl))diphenylamine), TFB) on ITO; (3) TPDSi2 + TFB blends on ITO substrates precoated with a conventional PLED HTL, poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS). PLED devices fabricated using these new HTLs exhibit comparable or superior performance vs comparable devices based on PEDOT-PSS alone. With these new HTLs, current efficiencies as high as ∼17 cd/A and luminances as high as ∼140,000 cd/m2 have been achieved. Further experiments demonstrate that not only do these HTLs enhance PLED anode hole injection but they also exhibit significantly greater electron-blocking capacity than PEDOT-PSS. The present organosiloxane HTL approach offers many other attractions such as convenience of fabrication, flexibility in choosing HTL components, and reduced HTL-induced luminescence quenching, and can be applied as a general strategy to enhance PLED performance.

AB - This contribution describes an organosiloxane cross-linking approach to robust, efficient, adherent hole-transport layers (HTLs) for polymer light-emitting diodes (PLEDs). An example is 4,4′-bis[(p- trichlorosilylpropylphenyl)phenylamino]biphenyl (TPDSi2), which combines the hole-transporting efficiency of N,N-diphenyl-N,N-bis(3- methylphenyl)-1,1-biphenyl)-4,4-diamine) (TPD, prototypical small-molecule HTL material) and the strong cross-linking/densification tendencies of organosilanol groups. Covalent chemical bonding of TPDSi2 to PLED anodes (e.g., indium tin oxide, ITO) and its self-cross-linking enable fabrication of three generations of insoluble PLED HTLs: (1) self-assembled monolayers (SAMs) of TPDSi2 on ITO; (2) cross-linked blend networks consisting of TPDSi2 + a hole transporting polymer (e.g., poly(9,9-dioctylfluorene- co-N-(4-(3-methylpropyl))diphenylamine), TFB) on ITO; (3) TPDSi2 + TFB blends on ITO substrates precoated with a conventional PLED HTL, poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS). PLED devices fabricated using these new HTLs exhibit comparable or superior performance vs comparable devices based on PEDOT-PSS alone. With these new HTLs, current efficiencies as high as ∼17 cd/A and luminances as high as ∼140,000 cd/m2 have been achieved. Further experiments demonstrate that not only do these HTLs enhance PLED anode hole injection but they also exhibit significantly greater electron-blocking capacity than PEDOT-PSS. The present organosiloxane HTL approach offers many other attractions such as convenience of fabrication, flexibility in choosing HTL components, and reduced HTL-induced luminescence quenching, and can be applied as a general strategy to enhance PLED performance.

UR - http://www.scopus.com/inward/record.url?scp=14844330655&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=14844330655&partnerID=8YFLogxK

U2 - 10.1021/ja044455q

DO - 10.1021/ja044455q

M3 - Article

C2 - 15740157

AN - SCOPUS:14844330655

VL - 127

SP - 3172

EP - 3183

JO - Journal of the American Chemical Society

JF - Journal of the American Chemical Society

SN - 0002-7863

IS - 9

ER -