High productivity in hybrid-poplar plantations without isoprene emission to the atmosphere

Russell K. Monson, Barbro Winkler, Todd N. Rosenstiel, Katja Block, Juliane Merl-Pham, Steven H. Strauss, Kori Ault, Jason Maxfield, David J.P. Moore, Nicole A. Trahan, Amberly A. Neice, Ian Shiach, Greg A. Barron-Gafford, Peter Ibsen, Joel T. McCorkel, Jörg Bernhardt, Joerg Peter Schnitzler

Research output: Contribution to journalArticle

3 Scopus citations

Abstract

Hybrid-poplar tree plantations provide a source for biofuel and biomass, but they also increase forest isoprene emissions. The consequences of increased isoprene emissions include higher rates of tropospheric ozone production, increases in the lifetime of methane, and increases in atmospheric aerosol production, all of which affect the global energy budget and/or lead to the degradation of air quality. Using RNA interference (RNAi) to suppress isoprene emission, we show that this trait, which is thought to be required for the tolerance of abiotic stress, is not required for high rates of photosynthesis and woody biomass production in the agroforest plantation environment, even in areas with high levels of climatic stress. Biomass production over 4 y in plantations in Arizona and Oregon was similar among genetic lines that emitted or did not emit significant amounts of isoprene. Lines that had substantially reduced isoprene emission rates also showed decreases in flavonol pigments, which reduce oxidative damage during extremes of abiotic stress, a pattern that would be expected to amplify metabolic dysfunction in the absence of isoprene production in stress-prone climate regimes. However, compensatory increases in the expression of other proteomic components, especially those associated with the production of protective compounds, such as carotenoids and terpenoids, and the fact that most biomass is produced prior to the hottest and driest part of the growing season explain the observed pattern of high biomass production with low isoprene emission. Our results show that it is possible to reduce the deleterious influences of isoprene on the atmosphere, while sustaining woody biomass production in temperate agroforest plantations.

Original languageEnglish (US)
Pages (from-to)1596-1605
Number of pages10
JournalProceedings of the National Academy of Sciences of the United States of America
Volume117
Issue number3
DOIs
StatePublished - Jan 21 2020

Keywords

  • Biofuel
  • Genetically modified organism
  • Hydroxyl radical
  • Oxidative stress
  • Thermotolerance

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'High productivity in hybrid-poplar plantations without isoprene emission to the atmosphere'. Together they form a unique fingerprint.

  • Cite this

    Monson, R. K., Winkler, B., Rosenstiel, T. N., Block, K., Merl-Pham, J., Strauss, S. H., Ault, K., Maxfield, J., Moore, D. J. P., Trahan, N. A., Neice, A. A., Shiach, I., Barron-Gafford, G. A., Ibsen, P., McCorkel, J. T., Bernhardt, J., & Schnitzler, J. P. (2020). High productivity in hybrid-poplar plantations without isoprene emission to the atmosphere. Proceedings of the National Academy of Sciences of the United States of America, 117(3), 1596-1605. https://doi.org/10.1073/pnas.1912327117