Hillslope Hydrology in Global Change Research and Earth System Modeling

Y. Fan, M. Clark, D. M. Lawrence, S. Swenson, L. E. Band, S. L. Brantley, P. D. Brooks, W. E. Dietrich, A. Flores, G. Grant, J. W. Kirchner, D. S. Mackay, J. J. McDonnell, P. C.D. Milly, P. L. Sullivan, C. Tague, H. Ajami, N. Chaney, A. Hartmann, P. HazenbergJ. McNamara, J. Pelletier, J. Perket, E. Rouholahnejad-Freund, T. Wagener, X. Zeng, E. Beighley, J. Buzan, M. Huang, B. Livneh, B. P. Mohanty, B. Nijssen, M. Safeeq, C. Shen, W. van Verseveld, J. Volk, D. Yamazaki

Research output: Contribution to journalArticle

46 Scopus citations

Abstract

Earth System Models (ESMs) are essential tools for understanding and predicting global change, but they cannot explicitly resolve hillslope-scale terrain structures that fundamentally organize water, energy, and biogeochemical stores and fluxes at subgrid scales. Here we bring together hydrologists, Critical Zone scientists, and ESM developers, to explore how hillslope structures may modulate ESM grid-level water, energy, and biogeochemical fluxes. In contrast to the one-dimensional (1-D), 2- to 3-m deep, and free-draining soil hydrology in most ESM land models, we hypothesize that 3-D, lateral ridge-to-valley flow through shallow and deep paths and insolation contrasts between sunny and shady slopes are the top two globally quantifiable organizers of water and energy (and vegetation) within an ESM grid cell. We hypothesize that these two processes are likely to impact ESM predictions where (and when) water and/or energy are limiting. We further hypothesize that, if implemented in ESM land models, these processes will increase simulated continental water storage and residence time, buffering terrestrial ecosystems against seasonal and interannual droughts. We explore efficient ways to capture these mechanisms in ESMs and identify critical knowledge gaps preventing us from scaling up hillslope to global processes. One such gap is our extremely limited knowledge of the subsurface, where water is stored (supporting vegetation) and released to stream baseflow (supporting aquatic ecosystems). We conclude with a set of organizing hypotheses and a call for global syntheses activities and model experiments to assess the impact of hillslope hydrology on global change predictions.

Original languageEnglish (US)
JournalWater Resources Research
DOIs
StatePublished - Jan 1 2019

Keywords

  • Critical Zone
  • Earth System Model
  • global water, energy, carbon cycles
  • hillslope hydrology
  • surface water-groundwater interaction
  • vegetation distribution

ASJC Scopus subject areas

  • Water Science and Technology

Fingerprint Dive into the research topics of 'Hillslope Hydrology in Global Change Research and Earth System Modeling'. Together they form a unique fingerprint.

  • Cite this

    Fan, Y., Clark, M., Lawrence, D. M., Swenson, S., Band, L. E., Brantley, S. L., Brooks, P. D., Dietrich, W. E., Flores, A., Grant, G., Kirchner, J. W., Mackay, D. S., McDonnell, J. J., Milly, P. C. D., Sullivan, P. L., Tague, C., Ajami, H., Chaney, N., Hartmann, A., ... Yamazaki, D. (2019). Hillslope Hydrology in Global Change Research and Earth System Modeling. Water Resources Research. https://doi.org/10.1029/2018WR023903