Hints for a Turnover at the Snow Line in the Giant Planet Occurrence Rate

Rachel B. Fernandes, Gijs D. Mulders, Ilaria Pascucci, Christoph Mordasini, Alexandre Emsenhuber

Research output: Contribution to journalArticlepeer-review


The orbital distribution of giant planets is crucial for understanding how terrestrial planets form and predicting yields of exoplanet surveys. Here, we derive giant planets occurrence rates as a function of orbital period by taking into account the detection efficiency of the Kepler and radial velocity (RV) surveys. The giant planet occurrence rates for Kepler and RV show the same rising trend with increasing distance from the star. We identify a break in the RV giant planet distribution between ∼2-3 au — close to the location of the snow line in the Solar System — after which the occurrence rate decreases with distance from the star. Extrapolating a broken power-law distribution to larger semi-major axes, we find good agreement with the ∼ 1% planet occurrence rates from direct imaging surveys. Assuming a symmetric power law, we also estimate that the occurrence of giant planets between 0.1−100 au is 26.6+75..54% for planets with masses 0.1-20 MJ and decreases to 6.2+11..52% for planets more massive than Jupiter. This implies that only a fraction of the structures detected in disks around young stars can be attributed to giant planets. Various planet population synthesis models show good agreement with the observed distribution, and we show how a quantitative comparison between model and data can be used to constrain planet formation and migration mechanisms.

Original languageEnglish (US)
JournalUnknown Journal
StatePublished - Dec 13 2018

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'Hints for a Turnover at the Snow Line in the Giant Planet Occurrence Rate'. Together they form a unique fingerprint.

Cite this