Holocene El Niño–Southern Oscillation variability reflected in subtropical Australian precipitation

C. Barr, J. Tibby, M. J. Leng, J. J. Tyler, A. C.G. Henderson, J. T. Overpeck, G. L. Simpson, J. E. Cole, S. J. Phipps, J. C. Marshall, G. B. McGregor, Q. Hua, F. H. McRobie

Research output: Contribution to journalArticle

14 Scopus citations

Abstract

The La Niña and El Niño phases of the El Niño-Southern Oscillation (ENSO) have major impacts on regional rainfall patterns around the globe, with substantial environmental, societal and economic implications. Long-term perspectives on ENSO behaviour, under changing background conditions, are essential to anticipating how ENSO phases may respond under future climate scenarios. Here, we derive a 7700-year, quantitative precipitation record using carbon isotope ratios from a single species of leaf preserved in lake sediments from subtropical eastern Australia. We find a generally wet (more La Niña-like) mid-Holocene that shifted towards drier and more variable climates after 3200 cal. yr BP, primarily driven by increasing frequency and strength of the El Niño phase. Climate model simulations implicate a progressive orbitally-driven weakening of the Pacific Walker Circulation as contributing to this change. At centennial scales, high rainfall characterised the Little Ice Age (~1450–1850 CE) in subtropical eastern Australia, contrasting with oceanic proxies that suggest El Niño-like conditions prevail during this period. Our data provide a new western Pacific perspective on Holocene ENSO variability and highlight the need to address ENSO reconstruction with a geographically diverse network of sites to characterise how both ENSO, and its impacts, vary in a changing climate.

Original languageEnglish (US)
Article number1627
JournalScientific reports
Volume9
Issue number1
DOIs
StatePublished - Dec 1 2019

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'Holocene El Niño–Southern Oscillation variability reflected in subtropical Australian precipitation'. Together they form a unique fingerprint.

  • Cite this

    Barr, C., Tibby, J., Leng, M. J., Tyler, J. J., Henderson, A. C. G., Overpeck, J. T., Simpson, G. L., Cole, J. E., Phipps, S. J., Marshall, J. C., McGregor, G. B., Hua, Q., & McRobie, F. H. (2019). Holocene El Niño–Southern Oscillation variability reflected in subtropical Australian precipitation. Scientific reports, 9(1), [1627]. https://doi.org/10.1038/s41598-019-38626-3