Hydrological understanding and societal action

Research output: Contribution to journalArticle

16 Citations (Scopus)

Abstract

Hydrology is both an applied practical science and a pure geophysical science. The goal of hydrology, as a geophysical science, is to achieve theories capable of explaining with satisfactory accuracy the phenomena of interest. Through the rapidly accelerating power and versatility of digital computing technology, theory development and application are immensely facilitated via increasingly sophisticated predictive modeling schemes, which are now the principal operating tools both for applied management hydrology and for basic geophysical hydrology. While this approach treats phenomena as classes or generalizations, social and behavioral scientists have long argued that human beings base their actions on percepts, i.e., on the concrete specifics of their experience. Thus, the commonly held ideal of basing policy, decisions, and public actions on the best possible science encounters a conflict in belief systems. A possible resolution of this dilemma lies in the use of observational components, which in concept-centered science serve as data to test or calibrate models. These components also serve as a great repository of natural experience that is closely attuned to the perceptual reality that propels societal action. Landscapes and sediments provide indices of real processes, whose occurrence can be expected by continuity to extend to present and future activity. More attention to research on such indices is warranted as a means of triggering perception-based action by responsible decision-makers. Grounded in reality, and tempered by their intrinsic fallibility, the scientifically powerful conceptual schemes (models) will then serve as guides to further action. The full societal benefit of hydrological science requires a balanced approach in which subdisciplines focused on environmental indices are afforded equal attention to those focused on conceptual idealization.

Original languageEnglish (US)
Pages (from-to)819-825
Number of pages7
JournalJournal of the American Water Resources Association
Volume34
Issue number4
StatePublished - Aug 1998

Fingerprint

Hydrology
hydrology
applied science
development theory
Sediments
repository
Concretes
science
sediment
modeling
decision
index

Keywords

  • Forest hydrology
  • Social and political
  • Water policy/regulation/decision making
  • Water resources education

ASJC Scopus subject areas

  • Earth and Planetary Sciences (miscellaneous)
  • Environmental Engineering
  • Water Science and Technology

Cite this

Hydrological understanding and societal action. / Baker, Victor.

In: Journal of the American Water Resources Association, Vol. 34, No. 4, 08.1998, p. 819-825.

Research output: Contribution to journalArticle

@article{6c26e1879c8349d38d808c8daf1663fa,
title = "Hydrological understanding and societal action",
abstract = "Hydrology is both an applied practical science and a pure geophysical science. The goal of hydrology, as a geophysical science, is to achieve theories capable of explaining with satisfactory accuracy the phenomena of interest. Through the rapidly accelerating power and versatility of digital computing technology, theory development and application are immensely facilitated via increasingly sophisticated predictive modeling schemes, which are now the principal operating tools both for applied management hydrology and for basic geophysical hydrology. While this approach treats phenomena as classes or generalizations, social and behavioral scientists have long argued that human beings base their actions on percepts, i.e., on the concrete specifics of their experience. Thus, the commonly held ideal of basing policy, decisions, and public actions on the best possible science encounters a conflict in belief systems. A possible resolution of this dilemma lies in the use of observational components, which in concept-centered science serve as data to test or calibrate models. These components also serve as a great repository of natural experience that is closely attuned to the perceptual reality that propels societal action. Landscapes and sediments provide indices of real processes, whose occurrence can be expected by continuity to extend to present and future activity. More attention to research on such indices is warranted as a means of triggering perception-based action by responsible decision-makers. Grounded in reality, and tempered by their intrinsic fallibility, the scientifically powerful conceptual schemes (models) will then serve as guides to further action. The full societal benefit of hydrological science requires a balanced approach in which subdisciplines focused on environmental indices are afforded equal attention to those focused on conceptual idealization.",
keywords = "Forest hydrology, Social and political, Water policy/regulation/decision making, Water resources education",
author = "Victor Baker",
year = "1998",
month = "8",
language = "English (US)",
volume = "34",
pages = "819--825",
journal = "Journal of the American Water Resources Association",
issn = "1093-474X",
publisher = "Wiley-Blackwell",
number = "4",

}

TY - JOUR

T1 - Hydrological understanding and societal action

AU - Baker, Victor

PY - 1998/8

Y1 - 1998/8

N2 - Hydrology is both an applied practical science and a pure geophysical science. The goal of hydrology, as a geophysical science, is to achieve theories capable of explaining with satisfactory accuracy the phenomena of interest. Through the rapidly accelerating power and versatility of digital computing technology, theory development and application are immensely facilitated via increasingly sophisticated predictive modeling schemes, which are now the principal operating tools both for applied management hydrology and for basic geophysical hydrology. While this approach treats phenomena as classes or generalizations, social and behavioral scientists have long argued that human beings base their actions on percepts, i.e., on the concrete specifics of their experience. Thus, the commonly held ideal of basing policy, decisions, and public actions on the best possible science encounters a conflict in belief systems. A possible resolution of this dilemma lies in the use of observational components, which in concept-centered science serve as data to test or calibrate models. These components also serve as a great repository of natural experience that is closely attuned to the perceptual reality that propels societal action. Landscapes and sediments provide indices of real processes, whose occurrence can be expected by continuity to extend to present and future activity. More attention to research on such indices is warranted as a means of triggering perception-based action by responsible decision-makers. Grounded in reality, and tempered by their intrinsic fallibility, the scientifically powerful conceptual schemes (models) will then serve as guides to further action. The full societal benefit of hydrological science requires a balanced approach in which subdisciplines focused on environmental indices are afforded equal attention to those focused on conceptual idealization.

AB - Hydrology is both an applied practical science and a pure geophysical science. The goal of hydrology, as a geophysical science, is to achieve theories capable of explaining with satisfactory accuracy the phenomena of interest. Through the rapidly accelerating power and versatility of digital computing technology, theory development and application are immensely facilitated via increasingly sophisticated predictive modeling schemes, which are now the principal operating tools both for applied management hydrology and for basic geophysical hydrology. While this approach treats phenomena as classes or generalizations, social and behavioral scientists have long argued that human beings base their actions on percepts, i.e., on the concrete specifics of their experience. Thus, the commonly held ideal of basing policy, decisions, and public actions on the best possible science encounters a conflict in belief systems. A possible resolution of this dilemma lies in the use of observational components, which in concept-centered science serve as data to test or calibrate models. These components also serve as a great repository of natural experience that is closely attuned to the perceptual reality that propels societal action. Landscapes and sediments provide indices of real processes, whose occurrence can be expected by continuity to extend to present and future activity. More attention to research on such indices is warranted as a means of triggering perception-based action by responsible decision-makers. Grounded in reality, and tempered by their intrinsic fallibility, the scientifically powerful conceptual schemes (models) will then serve as guides to further action. The full societal benefit of hydrological science requires a balanced approach in which subdisciplines focused on environmental indices are afforded equal attention to those focused on conceptual idealization.

KW - Forest hydrology

KW - Social and political

KW - Water policy/regulation/decision making

KW - Water resources education

UR - http://www.scopus.com/inward/record.url?scp=0032144202&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0032144202&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0032144202

VL - 34

SP - 819

EP - 825

JO - Journal of the American Water Resources Association

JF - Journal of the American Water Resources Association

SN - 1093-474X

IS - 4

ER -