Hypertrophy and increased gene expression of neurons containing neurokinin-B and substance-P messenger ribonucleic acids in the hypothalami of postmenopausal women

Naomi E Rance, W. Scott Young

Research output: Contribution to journalArticle

162 Citations (Scopus)

Abstract

We have previously described hypertrophy of neurons containing estrogen receptor mRNA in the infundibular nucleus of postmenopausal women. In the present investigation we identified peptide mRNAs in the hypertrophied neurons and determined whether postmenopausal neuronal hypertrophy was accompanied by changes in gene expression. In the first study in situ hybridization was performed on sections from hypothalami of postmenopausal women (n = 3) using synthetic 35S-labeled cDNA probes complementary to mRNAs encoding estrogen receptor, substance-P (SP), neurokinin-B (NKB), POMC, cholecystokinin, dynorphin, CRF, enkephalin, galanin, neuropeptide-Y, GH-releasing hormone, and tyrosine hydroxylase. Neuronal cross-sectional areas and cell densities were measured with the aid of a computer microscope system. Neurons labeled with the NKB and SP probes were comparable in size, morphology, and distribution to the hypertrophied neurons containing estrogen receptor mRNA. In contrast, neurons labeled with other cDNA probes were sparsely distributed (CRF and dynorphin), smaller in size (neuropeptide-Y, galanin, GH-releasing hormone, enkephalin, cholecystokinin, and POMC), or located anterior to the hypertrophied population (tyrosine hydroxylase). In the second study sections from hypothalami of premenopausal (n = 3) and postmenopausal (n = 3) women were incubated with cDNA probes complementary to SP or NKB mRNAs. The mean cross-sectional areas of postmenopausal infundibular neurons containing NKB and SP mRNAs increased to 194% and 176% of premenopausal values, respectively. The autoradiographic grain densities of infundibular neurons labeled with either probe were also significantly increased in the postmenopausal group. Finally, the numbers of labeled neurons/tissue increased 6-fold (SP) and 15-fold (NKB) in the postmenopausal infundibular nucleus. These data demonstrate that human menopause is associated with marked increases in hypothalamic NKB and SP gene expression. We propose that neurons containing estrogen receptor, SP, and NKB mRNAs participate in the hypothalamic circuitry regulating estrogen negative feedback in the human.

Original languageEnglish (US)
Pages (from-to)2239-2247
Number of pages9
JournalEndocrinology
Volume128
Issue number5
StatePublished - May 1991

Fingerprint

Neurokinin B
Substance P
Hypertrophy
Hypothalamus
RNA
Gene Expression
Neurons
Messenger RNA
Estrogen Receptors
Galanin
Dynorphins
Pro-Opiomelanocortin
Arcuate Nucleus of Hypothalamus
Complementary DNA
Enkephalins
Neuropeptide Y
Cholecystokinin
Tyrosine 3-Monooxygenase
Hormones
Computer Systems

ASJC Scopus subject areas

  • Endocrinology
  • Endocrinology, Diabetes and Metabolism

Cite this

@article{a449f9867d114546b33346607e324891,
title = "Hypertrophy and increased gene expression of neurons containing neurokinin-B and substance-P messenger ribonucleic acids in the hypothalami of postmenopausal women",
abstract = "We have previously described hypertrophy of neurons containing estrogen receptor mRNA in the infundibular nucleus of postmenopausal women. In the present investigation we identified peptide mRNAs in the hypertrophied neurons and determined whether postmenopausal neuronal hypertrophy was accompanied by changes in gene expression. In the first study in situ hybridization was performed on sections from hypothalami of postmenopausal women (n = 3) using synthetic 35S-labeled cDNA probes complementary to mRNAs encoding estrogen receptor, substance-P (SP), neurokinin-B (NKB), POMC, cholecystokinin, dynorphin, CRF, enkephalin, galanin, neuropeptide-Y, GH-releasing hormone, and tyrosine hydroxylase. Neuronal cross-sectional areas and cell densities were measured with the aid of a computer microscope system. Neurons labeled with the NKB and SP probes were comparable in size, morphology, and distribution to the hypertrophied neurons containing estrogen receptor mRNA. In contrast, neurons labeled with other cDNA probes were sparsely distributed (CRF and dynorphin), smaller in size (neuropeptide-Y, galanin, GH-releasing hormone, enkephalin, cholecystokinin, and POMC), or located anterior to the hypertrophied population (tyrosine hydroxylase). In the second study sections from hypothalami of premenopausal (n = 3) and postmenopausal (n = 3) women were incubated with cDNA probes complementary to SP or NKB mRNAs. The mean cross-sectional areas of postmenopausal infundibular neurons containing NKB and SP mRNAs increased to 194{\%} and 176{\%} of premenopausal values, respectively. The autoradiographic grain densities of infundibular neurons labeled with either probe were also significantly increased in the postmenopausal group. Finally, the numbers of labeled neurons/tissue increased 6-fold (SP) and 15-fold (NKB) in the postmenopausal infundibular nucleus. These data demonstrate that human menopause is associated with marked increases in hypothalamic NKB and SP gene expression. We propose that neurons containing estrogen receptor, SP, and NKB mRNAs participate in the hypothalamic circuitry regulating estrogen negative feedback in the human.",
author = "Rance, {Naomi E} and Young, {W. Scott}",
year = "1991",
month = "5",
language = "English (US)",
volume = "128",
pages = "2239--2247",
journal = "Endocrinology",
issn = "0013-7227",
publisher = "The Endocrine Society",
number = "5",

}

TY - JOUR

T1 - Hypertrophy and increased gene expression of neurons containing neurokinin-B and substance-P messenger ribonucleic acids in the hypothalami of postmenopausal women

AU - Rance, Naomi E

AU - Young, W. Scott

PY - 1991/5

Y1 - 1991/5

N2 - We have previously described hypertrophy of neurons containing estrogen receptor mRNA in the infundibular nucleus of postmenopausal women. In the present investigation we identified peptide mRNAs in the hypertrophied neurons and determined whether postmenopausal neuronal hypertrophy was accompanied by changes in gene expression. In the first study in situ hybridization was performed on sections from hypothalami of postmenopausal women (n = 3) using synthetic 35S-labeled cDNA probes complementary to mRNAs encoding estrogen receptor, substance-P (SP), neurokinin-B (NKB), POMC, cholecystokinin, dynorphin, CRF, enkephalin, galanin, neuropeptide-Y, GH-releasing hormone, and tyrosine hydroxylase. Neuronal cross-sectional areas and cell densities were measured with the aid of a computer microscope system. Neurons labeled with the NKB and SP probes were comparable in size, morphology, and distribution to the hypertrophied neurons containing estrogen receptor mRNA. In contrast, neurons labeled with other cDNA probes were sparsely distributed (CRF and dynorphin), smaller in size (neuropeptide-Y, galanin, GH-releasing hormone, enkephalin, cholecystokinin, and POMC), or located anterior to the hypertrophied population (tyrosine hydroxylase). In the second study sections from hypothalami of premenopausal (n = 3) and postmenopausal (n = 3) women were incubated with cDNA probes complementary to SP or NKB mRNAs. The mean cross-sectional areas of postmenopausal infundibular neurons containing NKB and SP mRNAs increased to 194% and 176% of premenopausal values, respectively. The autoradiographic grain densities of infundibular neurons labeled with either probe were also significantly increased in the postmenopausal group. Finally, the numbers of labeled neurons/tissue increased 6-fold (SP) and 15-fold (NKB) in the postmenopausal infundibular nucleus. These data demonstrate that human menopause is associated with marked increases in hypothalamic NKB and SP gene expression. We propose that neurons containing estrogen receptor, SP, and NKB mRNAs participate in the hypothalamic circuitry regulating estrogen negative feedback in the human.

AB - We have previously described hypertrophy of neurons containing estrogen receptor mRNA in the infundibular nucleus of postmenopausal women. In the present investigation we identified peptide mRNAs in the hypertrophied neurons and determined whether postmenopausal neuronal hypertrophy was accompanied by changes in gene expression. In the first study in situ hybridization was performed on sections from hypothalami of postmenopausal women (n = 3) using synthetic 35S-labeled cDNA probes complementary to mRNAs encoding estrogen receptor, substance-P (SP), neurokinin-B (NKB), POMC, cholecystokinin, dynorphin, CRF, enkephalin, galanin, neuropeptide-Y, GH-releasing hormone, and tyrosine hydroxylase. Neuronal cross-sectional areas and cell densities were measured with the aid of a computer microscope system. Neurons labeled with the NKB and SP probes were comparable in size, morphology, and distribution to the hypertrophied neurons containing estrogen receptor mRNA. In contrast, neurons labeled with other cDNA probes were sparsely distributed (CRF and dynorphin), smaller in size (neuropeptide-Y, galanin, GH-releasing hormone, enkephalin, cholecystokinin, and POMC), or located anterior to the hypertrophied population (tyrosine hydroxylase). In the second study sections from hypothalami of premenopausal (n = 3) and postmenopausal (n = 3) women were incubated with cDNA probes complementary to SP or NKB mRNAs. The mean cross-sectional areas of postmenopausal infundibular neurons containing NKB and SP mRNAs increased to 194% and 176% of premenopausal values, respectively. The autoradiographic grain densities of infundibular neurons labeled with either probe were also significantly increased in the postmenopausal group. Finally, the numbers of labeled neurons/tissue increased 6-fold (SP) and 15-fold (NKB) in the postmenopausal infundibular nucleus. These data demonstrate that human menopause is associated with marked increases in hypothalamic NKB and SP gene expression. We propose that neurons containing estrogen receptor, SP, and NKB mRNAs participate in the hypothalamic circuitry regulating estrogen negative feedback in the human.

UR - http://www.scopus.com/inward/record.url?scp=0025852281&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0025852281&partnerID=8YFLogxK

M3 - Article

C2 - 1708331

AN - SCOPUS:0025852281

VL - 128

SP - 2239

EP - 2247

JO - Endocrinology

JF - Endocrinology

SN - 0013-7227

IS - 5

ER -