IL-36γ is a key regulator of neutrophil infiltration in the vaginal microenvironment and limits neuroinvasion in genital HSV-2 infection

Jameson K. Gardner, Alison Swaims-Kohlmeier, Melissa M. Herbst-Kralovetz

Research output: Contribution to journalArticle

1 Scopus citations


HSV-2 is a neurotropic virus that causes a persistent, lifelong infection that increases risk for other sexually transmitted infections. The vaginal epithelium is the first line of defense against HSV-2 and coordinates the immune response through the secretion of immune mediators, including the proinflammatory cytokine IL-36γ. Previously, we showed that IL-36γ treatment promoted transient polymorphonuclear cell infiltration to the vaginal cavity and protected against lethal HSV-2 challenge. In this report, we reveal that IL-36γ specifically induces transient neutrophil infiltration but does not impact monocyte and macrophage recruitment. Using IL-36γ-/- mice in a lethal HSV-2 challenge model, we show that neutrophil counts are significantly reduced at 1 and 2 d postinfection and that KC-mediated mature neutrophil recruitment is impaired in IL-36γ-/- mice. Additionally, IL-36γ-/- mice develop genital disease more rapidly, have significantly reduced survival time, and exhibit an increased incidence of hind limb paralysis that is linked to productive HSV-2 infection in the brain stem. IL-36γ-/- mice also exhibit a significant delay in clearance of the virus from the vaginal epithelium and a more rapid spread of HSV-2 to the spinal cord, bladder, and colon. We further show that the decreased survival time and increased virus spread observed in IL-36γ-/- mice are not neutrophildependent, suggesting that IL-36γ may function to limit HSV-2 spread in the nervous system. Ultimately, we demonstrate that IL-36γ is a key regulator of neutrophil recruitment in the vaginal microenvironment and may function to limit HSV-2 neuroinvasion.

Original languageEnglish (US)
Pages (from-to)2655-2664
Number of pages10
JournalJournal of Immunology
Issue number10
Publication statusPublished - Nov 15 2019


ASJC Scopus subject areas

  • Immunology and Allergy
  • Immunology

Cite this