Imaging polarimetry in the LWIR with microgrid polarimeters

Research output: Contribution to journalConference articlepeer-review

Abstract

Microgrid polarimeters have emerged over the past decade as a viable tool for performing real-time, highly accurate polarimetric imagery. A microgrid polarimeter operates by integrating a focal plane array (FPA) with an array of micropolarizing optics. Mircrogrids have the advantage of being relatively compact, rugged, and inherently spatiotemporally aligned. However, they have the single disadvantage that the various polarization measurements that go into estimating the Stokes parameters at a particular pixel are actually coming from separate locations in the field. Hence, a microgrid polarimeter performs best where there is no image information, obviating the need for an imaging polarimeter! Recently we have been working with a LWIR microgrid polarimeter at the College of Optical Sciences. Our instrument is a DRS Sensors & Targeting Systems 640 x 480 HgCdTe FPA with linear polarizers at 0°, 45°, 90°, and 135° [1]. In this paper we will review our recent results that derive methods for artifact-free reconstruction of band limited imagery.

Original languageEnglish (US)
Article number04009
JournalEPJ Web of Conferences
Volume5
DOIs
StatePublished - Jun 2 2010
Event1st NanoCharM Workshop on Advanced Polarimetric Instrumentation, API 2009 - Palaiseau, France
Duration: Dec 7 2009Dec 9 2009

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint Dive into the research topics of 'Imaging polarimetry in the LWIR with microgrid polarimeters'. Together they form a unique fingerprint.

Cite this