Impacts of modified Richards equation on RegCM4 regional climate modeling over East Asia

Yan Yu, Zhenghui Xie, Xubin Zeng

Research output: Contribution to journalArticle

11 Scopus citations

Abstract

To remove the deficiency of the numerical solution of the mass conservation-based Richards equation for soil moisture in a regional climate model (RegCM4 with its land surface component Community Land Model 3.5 (CLM3.5)), a revised numerical algorithm that is used in CLM4.5 is implemented into CLM3.5. Compared with in situ measurements, the modified numerical method improves the ground water table depth simulations in RegCM4. It also improves the temporal and spatial variability of soil moisture to some extent. Its impact on simulated summer precipitation is mixed, with improvements over three subregions in China but with increased errors in three other subregions. The impact on the simulated summer temperature is relatively small (with the mean biases changed by less than 10% over most subregions). The evapotranspiration differences between modified and control land-atmosphere coupled simulations are enhanced over the northwest subregion and Tibetan Plateau compared to offline simulations due to land surface feedbacks to the atmosphere (in coupled simulations). Similarly the soil moisture differences in coupled simulations are geographically different from those in offline simulations over the eastern monsoon area. The summer precipitation differences between modified and control coupled simulations are found to be explained by the differences of both surface evapotranspiration and large-scale water vapor flux convergence which have opposite signs over the northwest subregion and Tibetan Plateau but have the same signs over other subregions.

Original languageEnglish (US)
Pages (from-to)12,642-12,659
JournalJournal of Geophysical Research Atmospheres
Volume119
Issue number22
DOIs
StatePublished - Nov 27 2014

Keywords

  • East Asia monsoon region
  • modified Richards equation
  • regional climate
  • soil moisture

ASJC Scopus subject areas

  • Geophysics
  • Forestry
  • Oceanography
  • Aquatic Science
  • Ecology
  • Water Science and Technology
  • Soil Science
  • Geochemistry and Petrology
  • Earth-Surface Processes
  • Atmospheric Science
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science
  • Palaeontology

Fingerprint Dive into the research topics of 'Impacts of modified Richards equation on RegCM4 regional climate modeling over East Asia'. Together they form a unique fingerprint.

  • Cite this