Importance of biogeochemical processes in modeling stream chemistry in two watersheds in the Sierra Nevada, California

Thomas Meixner, Aaron Brown, Roger C. Bales

Research output: Contribution to journalArticle

11 Citations (Scopus)

Abstract

Two small (0.22 and 0.48 ha) alpine watersheds in the Sierra Nevada of California were studied during the 1992 and 1993 snowmelt seasons to evaluate the importance of soil properties and processes on chemical concentrations in- the discharges from each watershed. Watershed 1 was surveyed as having 26% soil cover, whereas watershed 2 was 10% soil covered. Watershed 2 had greater H+ and nitrogen consumption than watershed 1 but similar cation and sulfate concentrations despite having one fourth the surveyed soil volume per unit area as watershed 1. Daily stream concentrations simulated with the Alpine Hydrochemical Model (AHM) matched the data well, after a systematic model calibration with a subset of the data. We found that the structure of the AHM and the hydrologic parameters developed for the nearby 1.2 km2 Emerald Lake watershed could be applied to these watersheds with only small adjustments; chemical parameters required considerably more adjustment, reflecting a greater degree of chemical versus physical heterogeneity at this scale. Calibration for watershed 2 gave a higher percent base saturation (19 versus 4%) and lower stream P(CO2) (10-3.1 versus 10-2.6 atm) than for watershed 1 and three times the soil reactivity (expected) of a field survey. Areas mapped as exposed bedrock in the catchments apparently contributed cations and alkalinity to stream water to a greater extent than did neighboring areas of soil. Areas of exposed bedrock were a larger nitrogen sink than the adjoining areas of soil. The pH and acid-neutralizing capacity of surface runoff in both catchments were less sensitive to changes in atmospheric deposition than at the nearby Emerald Lake watershed. This decreased sensitivity was due to (1) a less pronounced ionic pulse, (2) less retention of sulfate in the soil, and (3) greater nitrate retention.

Original languageEnglish (US)
Pages (from-to)3121-3133
Number of pages13
JournalWater Resources Research
Volume34
Issue number11
StatePublished - Nov 1998

Fingerprint

Watersheds
chemistry
watershed
modeling
Soils
soil
emerald
Catchments
bedrock
Sulfates
Lakes
Sierra Nevada (California)
Cations
Nitrogen
cation
cations
Calibration
sulfates
catchment
sulfate

ASJC Scopus subject areas

  • Aquatic Science
  • Environmental Science(all)
  • Environmental Chemistry
  • Water Science and Technology

Cite this

Importance of biogeochemical processes in modeling stream chemistry in two watersheds in the Sierra Nevada, California. / Meixner, Thomas; Brown, Aaron; Bales, Roger C.

In: Water Resources Research, Vol. 34, No. 11, 11.1998, p. 3121-3133.

Research output: Contribution to journalArticle

@article{1149ec6f597440d089b780d64fd214e9,
title = "Importance of biogeochemical processes in modeling stream chemistry in two watersheds in the Sierra Nevada, California",
abstract = "Two small (0.22 and 0.48 ha) alpine watersheds in the Sierra Nevada of California were studied during the 1992 and 1993 snowmelt seasons to evaluate the importance of soil properties and processes on chemical concentrations in- the discharges from each watershed. Watershed 1 was surveyed as having 26{\%} soil cover, whereas watershed 2 was 10{\%} soil covered. Watershed 2 had greater H+ and nitrogen consumption than watershed 1 but similar cation and sulfate concentrations despite having one fourth the surveyed soil volume per unit area as watershed 1. Daily stream concentrations simulated with the Alpine Hydrochemical Model (AHM) matched the data well, after a systematic model calibration with a subset of the data. We found that the structure of the AHM and the hydrologic parameters developed for the nearby 1.2 km2 Emerald Lake watershed could be applied to these watersheds with only small adjustments; chemical parameters required considerably more adjustment, reflecting a greater degree of chemical versus physical heterogeneity at this scale. Calibration for watershed 2 gave a higher percent base saturation (19 versus 4{\%}) and lower stream P(CO2) (10-3.1 versus 10-2.6 atm) than for watershed 1 and three times the soil reactivity (expected) of a field survey. Areas mapped as exposed bedrock in the catchments apparently contributed cations and alkalinity to stream water to a greater extent than did neighboring areas of soil. Areas of exposed bedrock were a larger nitrogen sink than the adjoining areas of soil. The pH and acid-neutralizing capacity of surface runoff in both catchments were less sensitive to changes in atmospheric deposition than at the nearby Emerald Lake watershed. This decreased sensitivity was due to (1) a less pronounced ionic pulse, (2) less retention of sulfate in the soil, and (3) greater nitrate retention.",
author = "Thomas Meixner and Aaron Brown and Bales, {Roger C.}",
year = "1998",
month = "11",
language = "English (US)",
volume = "34",
pages = "3121--3133",
journal = "Water Resources Research",
issn = "0043-1397",
publisher = "American Geophysical Union",
number = "11",

}

TY - JOUR

T1 - Importance of biogeochemical processes in modeling stream chemistry in two watersheds in the Sierra Nevada, California

AU - Meixner, Thomas

AU - Brown, Aaron

AU - Bales, Roger C.

PY - 1998/11

Y1 - 1998/11

N2 - Two small (0.22 and 0.48 ha) alpine watersheds in the Sierra Nevada of California were studied during the 1992 and 1993 snowmelt seasons to evaluate the importance of soil properties and processes on chemical concentrations in- the discharges from each watershed. Watershed 1 was surveyed as having 26% soil cover, whereas watershed 2 was 10% soil covered. Watershed 2 had greater H+ and nitrogen consumption than watershed 1 but similar cation and sulfate concentrations despite having one fourth the surveyed soil volume per unit area as watershed 1. Daily stream concentrations simulated with the Alpine Hydrochemical Model (AHM) matched the data well, after a systematic model calibration with a subset of the data. We found that the structure of the AHM and the hydrologic parameters developed for the nearby 1.2 km2 Emerald Lake watershed could be applied to these watersheds with only small adjustments; chemical parameters required considerably more adjustment, reflecting a greater degree of chemical versus physical heterogeneity at this scale. Calibration for watershed 2 gave a higher percent base saturation (19 versus 4%) and lower stream P(CO2) (10-3.1 versus 10-2.6 atm) than for watershed 1 and three times the soil reactivity (expected) of a field survey. Areas mapped as exposed bedrock in the catchments apparently contributed cations and alkalinity to stream water to a greater extent than did neighboring areas of soil. Areas of exposed bedrock were a larger nitrogen sink than the adjoining areas of soil. The pH and acid-neutralizing capacity of surface runoff in both catchments were less sensitive to changes in atmospheric deposition than at the nearby Emerald Lake watershed. This decreased sensitivity was due to (1) a less pronounced ionic pulse, (2) less retention of sulfate in the soil, and (3) greater nitrate retention.

AB - Two small (0.22 and 0.48 ha) alpine watersheds in the Sierra Nevada of California were studied during the 1992 and 1993 snowmelt seasons to evaluate the importance of soil properties and processes on chemical concentrations in- the discharges from each watershed. Watershed 1 was surveyed as having 26% soil cover, whereas watershed 2 was 10% soil covered. Watershed 2 had greater H+ and nitrogen consumption than watershed 1 but similar cation and sulfate concentrations despite having one fourth the surveyed soil volume per unit area as watershed 1. Daily stream concentrations simulated with the Alpine Hydrochemical Model (AHM) matched the data well, after a systematic model calibration with a subset of the data. We found that the structure of the AHM and the hydrologic parameters developed for the nearby 1.2 km2 Emerald Lake watershed could be applied to these watersheds with only small adjustments; chemical parameters required considerably more adjustment, reflecting a greater degree of chemical versus physical heterogeneity at this scale. Calibration for watershed 2 gave a higher percent base saturation (19 versus 4%) and lower stream P(CO2) (10-3.1 versus 10-2.6 atm) than for watershed 1 and three times the soil reactivity (expected) of a field survey. Areas mapped as exposed bedrock in the catchments apparently contributed cations and alkalinity to stream water to a greater extent than did neighboring areas of soil. Areas of exposed bedrock were a larger nitrogen sink than the adjoining areas of soil. The pH and acid-neutralizing capacity of surface runoff in both catchments were less sensitive to changes in atmospheric deposition than at the nearby Emerald Lake watershed. This decreased sensitivity was due to (1) a less pronounced ionic pulse, (2) less retention of sulfate in the soil, and (3) greater nitrate retention.

UR - http://www.scopus.com/inward/record.url?scp=0031731342&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0031731342&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:0031731342

VL - 34

SP - 3121

EP - 3133

JO - Water Resources Research

JF - Water Resources Research

SN - 0043-1397

IS - 11

ER -