Improvement of TOPLATS-based discharge predictions through assimilation of ERS-based remotely sensed soil moisture values

Valentijn R.N. Pauwels, Rudi Hoeben, Niko E.C. Verhoest, Franois P. De Troch, Peter A. Troch

Research output: Contribution to journalArticle

92 Scopus citations

Abstract

In this paper, we investigate the possibility to improve discharge predictions from a lumped hydrological model through assimilation of remotely sensed soil moisture values. Therefore, an algorithm to estimate surface soil moisture values through active microwave remote sensing is developed, bypassing the need to collect in situ ground parameters. The algorithm to estimate soil moisture by use of radar data combines a physically based and an empirical backscatter model. This method estimates effective soil roughness parameters, and good estimates of surface soil moisture are provided for bare soils. These remotely sensed soil moisture values over bare soils are then assimilated into a hydrological model using the statistical correction method. The results suggest that it is possible to determine soil moisture values over bare soils from remote sensing observations without the need to collect ground truth data, and that there is potential to improve model-based discharge predictions through assimilation of these remotely sensed soil moisture values.

Original languageEnglish (US)
Pages (from-to)995-1013
Number of pages19
JournalHydrological Processes
Volume16
Issue number5
DOIs
StatePublished - Mar 15 2002
Externally publishedYes

ASJC Scopus subject areas

  • Water Science and Technology

Fingerprint Dive into the research topics of 'Improvement of TOPLATS-based discharge predictions through assimilation of ERS-based remotely sensed soil moisture values'. Together they form a unique fingerprint.

  • Cite this