Improving feedback-integrated scene cancellation nonuniformity correction through optimal selection of available camera motion

Wiley T. Black, J. Scott Tyo

Research output: Contribution to journalArticle

3 Scopus citations

Abstract

Scene-based nonuniformity correction (SBNUC) techniques provide a means of identifying and correcting focal plane array nonuniformity (NU) through algorithmic analysis of the camera output. SBNUC techniques rely almost universally on camera motion to provide a means of separating the scene from the NU pattern. A simulation is developed that is used to explore the role and effect of camera motion on two representative registration-based SBNUC algorithms: interframe registration-based least mean square (IRLMS) by Zuo et al. and feedback-integrated scene-cancellation (FiSC) by Black and Tyo. The effect of camera motion velocity and direction between frames is examined. The high spatial frequency portion of NU is shown to be corrected by both IRLMS and FiSC, and this correction is relatively indifferent to nonzero camera motion parameters. The FiSC algorithm was specifically designed to incorporate the low spatial frequency component into registration-based SBNUC, but demonstrates a strong dependency on camera motion. Techniques for mitigation of camera motion parameter effects through tradespace and buffering are presented and tested. With proper mitigation and camera motion, FiSC is shown to correct most high and low spatial frequency NU with fewer than 100 framepairs repeatedly processed using techniques suitable for real-time processing implementation.

Original languageEnglish (US)
Article number053014
JournalJournal of Electronic Imaging
Volume23
Issue number5
DOIs
StatePublished - Sep 1 2014

Keywords

  • fixed-pattern noise
  • infrared
  • nonuniformity
  • nonuniformity correction
  • scene-based nonuniformity correction

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics
  • Computer Science Applications
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Improving feedback-integrated scene cancellation nonuniformity correction through optimal selection of available camera motion'. Together they form a unique fingerprint.

  • Cite this