Improving representation of convective transport for scale-aware parameterization: 1. Convection and cloud properties simulated with spectral bin and bulk microphysics

Jiwen Fan, Yi Chin Liu, Kuan Man Xu, Kirk North, Scott Collis, Xiquan Dong, Guang J. Zhang, Qian Chen, Pavlos Kollias, Steven J. Ghan

Research output: Contribution to journalArticle

35 Scopus citations

Abstract

The ultimate goal of this study is to improve the representation of convective transport by cumulus parameterization for mesoscale and climate models. As Part 1 of the study, we perform extensive evaluations of cloud-resolving simulations of a squall line and mesoscale convective complexes in midlatitude continent and tropical regions using the Weather Research and Forecasting model with spectral bin microphysics (SBM) and with two double-moment bulk microphysics schemes: a modified Morrison (MOR) and Milbrandt and Yau (MY2). Compared to observations, in general, SBM gives better simulations of precipitation and vertical velocity of convective cores than MOR and MY2 and therefore will be used for analysis of scale dependence of eddy transport in Part 2. The common features of the simulations for all convective systems are (1) themodel tends to overestimate convection intensity in the middle and upper troposphere, but SBM can alleviate much of the overestimation and reproduce the observed convection intensity well; (2) the model greatly overestimates Ze in convective cores, especially for the weak updraft velocity; and (3) the model performs better for midlatitude convective systems than the tropical system. The modeled mass fluxes of the midlatitude systems are not sensitive to microphysics schemes but are very sensitive for the tropical case indicating strong microphysics modification to convection. Cloud microphysical measurements of rain, snow, and graupel in convective cores will be critically important to further elucidate issues within cloud microphysics schemes.

Original languageEnglish (US)
Pages (from-to)3485-3509
Number of pages25
JournalJournal of Geophysical Research
Volume120
Issue number8
DOIs
StatePublished - Jan 1 2015
Externally publishedYes

ASJC Scopus subject areas

  • Geophysics
  • Forestry
  • Oceanography
  • Aquatic Science
  • Ecology
  • Water Science and Technology
  • Soil Science
  • Geochemistry and Petrology
  • Earth-Surface Processes
  • Atmospheric Science
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science
  • Palaeontology

Fingerprint Dive into the research topics of 'Improving representation of convective transport for scale-aware parameterization: 1. Convection and cloud properties simulated with spectral bin and bulk microphysics'. Together they form a unique fingerprint.

  • Cite this