In situ calibration of large-radius jet energy and mass in 13 TeV proton–proton collisions with the ATLAS detector

The ATLAS Collaboration

Research output: Contribution to journalArticlepeer-review

Abstract

The response of the ATLAS detector to large-radius jets is measured in situ using 36.2 fb−1 of √s = 13 TeV proton–proton collisions provided by the LHC and recorded by the ATLAS experiment during 2015 and 2016. The jet energy scale is measured in events where the jet recoils against a reference object, which can be either a calibrated photon, a reconstructed Z boson, or a system of well-measured small-radius jets. The jet energy resolution and a calibration of forward jets are derived using dijet balance measurements. The jet mass response is measured with two methods: using mass peaks formed by W bosons and top quarks with large transverse momenta and by comparing the jet mass measured using the energy deposited in the calorimeter with that using the momenta of charged-particle tracks. The transverse momentum and mass responses in simulations are found to be about 2–3% higher than in data. This difference is adjusted for with a correction factor. The results of the different methods are combined to yield a calibration over a large range of transverse momenta (pT). The precision of the relative jet energy scale is 1–2% for 200 GeV < pT < 2 TeV, while that of the mass scale is 2–10%. The ratio of the energy resolutions in data and simulation is measured to a precision of 10–15% over the same pT range.

Original languageEnglish (US)
JournalUnknown Journal
StatePublished - Jul 25 2018

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'In situ calibration of large-radius jet energy and mass in 13 TeV proton–proton collisions with the ATLAS detector'. Together they form a unique fingerprint.

Cite this