Inactivation of MS2 coliphage by UV and hydrogen peroxide: Comparison by cultural and molecular methodologies

Research output: Contribution to journalArticle

11 Citations (Scopus)

Abstract

The use of advanced oxidation processes (AOP) are expected to increase for removal of emerging contaminants and pathogens from drinking water. In this study, the performance of a small community ultraviolet light reactor in combination with hydrogen peroxide (H2O2) for MS2 coliphage inactivation with two different flow rate conditions of 1 gal/min (gpm) and 2 gpm was evaluated. FollowingUVradiation,MS2showed a reduction of 5.3-5.8 log10 when quantified with cultural plaque counts,whereas corresponding quantitative polymerase chain reaction (qPCR) data showed only a 1.7-2.8 log10 reduction in viral RNA copy number. When H2O2 was added at either 2.5 or 5 ppm with UV at both flow rate conditions, enhanced MS2 inactivation occurred with a more than 7 log10 reduction observed via plaque counts, indicating that all added MS2 had been inactivated, since no plaques were formed after incubation at 37°C for 24 h. In contrast, qPCR only showed a corresponding 3-4 log10 reduction in viral RNA copy number. This research also sheds light on the inactivation of MS2 with ultraviolet light and in the presence of hydroxyl radicals and provides a practical use of qPCR to detect MS2 concentration following advanced oxidation relative to traditional plaque methodology; however qPCR detection overestimates the true number of infective virus.

Original languageEnglish (US)
Pages (from-to)397-403
Number of pages7
JournalJournal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering
Volume49
Issue number4
DOIs
StatePublished - Mar 21 2014

Fingerprint

Polymerase chain reaction
Hydrogen peroxide
RNA
Flow rate
Oxidation
Pathogens
Viruses
Potable water
Impurities
Ultraviolet Rays

ASJC Scopus subject areas

  • Environmental Engineering

Cite this

@article{0d0bc20228ec4c9bbcc05a427845187a,
title = "Inactivation of MS2 coliphage by UV and hydrogen peroxide: Comparison by cultural and molecular methodologies",
abstract = "The use of advanced oxidation processes (AOP) are expected to increase for removal of emerging contaminants and pathogens from drinking water. In this study, the performance of a small community ultraviolet light reactor in combination with hydrogen peroxide (H2O2) for MS2 coliphage inactivation with two different flow rate conditions of 1 gal/min (gpm) and 2 gpm was evaluated. FollowingUVradiation,MS2showed a reduction of 5.3-5.8 log10 when quantified with cultural plaque counts,whereas corresponding quantitative polymerase chain reaction (qPCR) data showed only a 1.7-2.8 log10 reduction in viral RNA copy number. When H2O2 was added at either 2.5 or 5 ppm with UV at both flow rate conditions, enhanced MS2 inactivation occurred with a more than 7 log10 reduction observed via plaque counts, indicating that all added MS2 had been inactivated, since no plaques were formed after incubation at 37°C for 24 h. In contrast, qPCR only showed a corresponding 3-4 log10 reduction in viral RNA copy number. This research also sheds light on the inactivation of MS2 with ultraviolet light and in the presence of hydroxyl radicals and provides a practical use of qPCR to detect MS2 concentration following advanced oxidation relative to traditional plaque methodology; however qPCR detection overestimates the true number of infective virus.",
author = "Sherchan, {Samendra P.} and Snyder, {Shane A} and Gerba, {Charles P} and Pepper, {Ian L}",
year = "2014",
month = "3",
day = "21",
doi = "10.1080/10934529.2014.854607",
language = "English (US)",
volume = "49",
pages = "397--403",
journal = "Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering",
issn = "1093-4529",
publisher = "Taylor and Francis Ltd.",
number = "4",

}

TY - JOUR

T1 - Inactivation of MS2 coliphage by UV and hydrogen peroxide

T2 - Comparison by cultural and molecular methodologies

AU - Sherchan, Samendra P.

AU - Snyder, Shane A

AU - Gerba, Charles P

AU - Pepper, Ian L

PY - 2014/3/21

Y1 - 2014/3/21

N2 - The use of advanced oxidation processes (AOP) are expected to increase for removal of emerging contaminants and pathogens from drinking water. In this study, the performance of a small community ultraviolet light reactor in combination with hydrogen peroxide (H2O2) for MS2 coliphage inactivation with two different flow rate conditions of 1 gal/min (gpm) and 2 gpm was evaluated. FollowingUVradiation,MS2showed a reduction of 5.3-5.8 log10 when quantified with cultural plaque counts,whereas corresponding quantitative polymerase chain reaction (qPCR) data showed only a 1.7-2.8 log10 reduction in viral RNA copy number. When H2O2 was added at either 2.5 or 5 ppm with UV at both flow rate conditions, enhanced MS2 inactivation occurred with a more than 7 log10 reduction observed via plaque counts, indicating that all added MS2 had been inactivated, since no plaques were formed after incubation at 37°C for 24 h. In contrast, qPCR only showed a corresponding 3-4 log10 reduction in viral RNA copy number. This research also sheds light on the inactivation of MS2 with ultraviolet light and in the presence of hydroxyl radicals and provides a practical use of qPCR to detect MS2 concentration following advanced oxidation relative to traditional plaque methodology; however qPCR detection overestimates the true number of infective virus.

AB - The use of advanced oxidation processes (AOP) are expected to increase for removal of emerging contaminants and pathogens from drinking water. In this study, the performance of a small community ultraviolet light reactor in combination with hydrogen peroxide (H2O2) for MS2 coliphage inactivation with two different flow rate conditions of 1 gal/min (gpm) and 2 gpm was evaluated. FollowingUVradiation,MS2showed a reduction of 5.3-5.8 log10 when quantified with cultural plaque counts,whereas corresponding quantitative polymerase chain reaction (qPCR) data showed only a 1.7-2.8 log10 reduction in viral RNA copy number. When H2O2 was added at either 2.5 or 5 ppm with UV at both flow rate conditions, enhanced MS2 inactivation occurred with a more than 7 log10 reduction observed via plaque counts, indicating that all added MS2 had been inactivated, since no plaques were formed after incubation at 37°C for 24 h. In contrast, qPCR only showed a corresponding 3-4 log10 reduction in viral RNA copy number. This research also sheds light on the inactivation of MS2 with ultraviolet light and in the presence of hydroxyl radicals and provides a practical use of qPCR to detect MS2 concentration following advanced oxidation relative to traditional plaque methodology; however qPCR detection overestimates the true number of infective virus.

UR - http://www.scopus.com/inward/record.url?scp=84890810899&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84890810899&partnerID=8YFLogxK

U2 - 10.1080/10934529.2014.854607

DO - 10.1080/10934529.2014.854607

M3 - Article

C2 - 24345237

AN - SCOPUS:84890810899

VL - 49

SP - 397

EP - 403

JO - Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering

JF - Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering

SN - 1093-4529

IS - 4

ER -