Influence of 1,25-dihydroxyvitamin D3 on cultured osteogenic sarcoma cells: Correlation with the 1,25-dihydroxyvitamin D3 receptor

S. Dokoh, C. A. Donaldson, Mark R Haussler

Research output: Contribution to journalArticle

133 Citations (Scopus)

Abstract

We have characterized the effects of the steroid hormone 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] on a series of rat osteogenic sarcoma cell lines of increasing osteoblastic-like nature (ROS 24/1, ROS 2/3, and ROS 17/2.8). When these cells were grown in monolayer culture in the presence of 10 nM 1,25-(OH)2D3, there was a dramatic and selective inhibition of proliferation in the ROS 17/2.8 line. Similar concentrations of other vitamin D metabolites did not elicit this effect. Furthermore, the aggregated cuboidal ROS 17/2.8 cells showed a marked change after 6 days of treatment with 10 nM 1,25-(OH)2D3 to an apparently less transformed spindle-like morphology. In contrast, ROS 2/3 displayed only a slight morphological alteration, and ROS 24/1 was unchanged by treatment with 1,25-(OH)2D3. Anchorage-independent growth studies performed in soft agar indicated that 1,25-(OH)2D3 inhibited colony formation to the greatest degree in ROS 17/2.8, with a lesser effect in ROS 2/3. Based upon analyses by sucrose gradient centrifugation, DNA cellulose chromatography, and saturation of specific binding, the level of the 1,25-(OH)2D3 receptor was quantitated in these cells. ROS 17/2.8 cells possess 18,000 copies of the receptor per cell, while ROS 2/3 contains only 500 binding sites per cell, and no detectable high-affinity 1,25-(OH)2D3 receptor is found in ROS 24/1. The receptor in ROS cells is indistinguishable from other mammalian 1,25-(OH)2D3 receptors in that it is a DNA-binding protein that sediments on sucrose gradients at 3.3S, and specifically binds the hormone with high affinity (K(d) = 2 to 3 x 10-11 M). Since the biological responses of these three cell lines to 1,25-(OH)2D3 exhibit a strong correlation with the respective number of receptor molecules per cell, we propose that the actions of this hormone are mediated by the specific 1,25-(OH)2D3 receptor.

Original languageEnglish (US)
Pages (from-to)2103-2109
Number of pages7
JournalCancer Research
Volume44
Issue number5
StatePublished - 1984

Fingerprint

Calcitriol Receptors
Calcitriol
Osteosarcoma
Hormones
Sucrose
Cell Line
DNA-Binding Proteins
Centrifugation
Vitamin D
Agar
Chromatography
Steroids
Binding Sites
Growth

ASJC Scopus subject areas

  • Cancer Research
  • Oncology

Cite this

Influence of 1,25-dihydroxyvitamin D3 on cultured osteogenic sarcoma cells : Correlation with the 1,25-dihydroxyvitamin D3 receptor. / Dokoh, S.; Donaldson, C. A.; Haussler, Mark R.

In: Cancer Research, Vol. 44, No. 5, 1984, p. 2103-2109.

Research output: Contribution to journalArticle

@article{91a2371efb5d4317ba01e72ee0ec9248,
title = "Influence of 1,25-dihydroxyvitamin D3 on cultured osteogenic sarcoma cells: Correlation with the 1,25-dihydroxyvitamin D3 receptor",
abstract = "We have characterized the effects of the steroid hormone 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] on a series of rat osteogenic sarcoma cell lines of increasing osteoblastic-like nature (ROS 24/1, ROS 2/3, and ROS 17/2.8). When these cells were grown in monolayer culture in the presence of 10 nM 1,25-(OH)2D3, there was a dramatic and selective inhibition of proliferation in the ROS 17/2.8 line. Similar concentrations of other vitamin D metabolites did not elicit this effect. Furthermore, the aggregated cuboidal ROS 17/2.8 cells showed a marked change after 6 days of treatment with 10 nM 1,25-(OH)2D3 to an apparently less transformed spindle-like morphology. In contrast, ROS 2/3 displayed only a slight morphological alteration, and ROS 24/1 was unchanged by treatment with 1,25-(OH)2D3. Anchorage-independent growth studies performed in soft agar indicated that 1,25-(OH)2D3 inhibited colony formation to the greatest degree in ROS 17/2.8, with a lesser effect in ROS 2/3. Based upon analyses by sucrose gradient centrifugation, DNA cellulose chromatography, and saturation of specific binding, the level of the 1,25-(OH)2D3 receptor was quantitated in these cells. ROS 17/2.8 cells possess 18,000 copies of the receptor per cell, while ROS 2/3 contains only 500 binding sites per cell, and no detectable high-affinity 1,25-(OH)2D3 receptor is found in ROS 24/1. The receptor in ROS cells is indistinguishable from other mammalian 1,25-(OH)2D3 receptors in that it is a DNA-binding protein that sediments on sucrose gradients at 3.3S, and specifically binds the hormone with high affinity (K(d) = 2 to 3 x 10-11 M). Since the biological responses of these three cell lines to 1,25-(OH)2D3 exhibit a strong correlation with the respective number of receptor molecules per cell, we propose that the actions of this hormone are mediated by the specific 1,25-(OH)2D3 receptor.",
author = "S. Dokoh and Donaldson, {C. A.} and Haussler, {Mark R}",
year = "1984",
language = "English (US)",
volume = "44",
pages = "2103--2109",
journal = "Journal of Cancer Research",
issn = "0099-7013",
publisher = "American Association for Cancer Research Inc.",
number = "5",

}

TY - JOUR

T1 - Influence of 1,25-dihydroxyvitamin D3 on cultured osteogenic sarcoma cells

T2 - Correlation with the 1,25-dihydroxyvitamin D3 receptor

AU - Dokoh, S.

AU - Donaldson, C. A.

AU - Haussler, Mark R

PY - 1984

Y1 - 1984

N2 - We have characterized the effects of the steroid hormone 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] on a series of rat osteogenic sarcoma cell lines of increasing osteoblastic-like nature (ROS 24/1, ROS 2/3, and ROS 17/2.8). When these cells were grown in monolayer culture in the presence of 10 nM 1,25-(OH)2D3, there was a dramatic and selective inhibition of proliferation in the ROS 17/2.8 line. Similar concentrations of other vitamin D metabolites did not elicit this effect. Furthermore, the aggregated cuboidal ROS 17/2.8 cells showed a marked change after 6 days of treatment with 10 nM 1,25-(OH)2D3 to an apparently less transformed spindle-like morphology. In contrast, ROS 2/3 displayed only a slight morphological alteration, and ROS 24/1 was unchanged by treatment with 1,25-(OH)2D3. Anchorage-independent growth studies performed in soft agar indicated that 1,25-(OH)2D3 inhibited colony formation to the greatest degree in ROS 17/2.8, with a lesser effect in ROS 2/3. Based upon analyses by sucrose gradient centrifugation, DNA cellulose chromatography, and saturation of specific binding, the level of the 1,25-(OH)2D3 receptor was quantitated in these cells. ROS 17/2.8 cells possess 18,000 copies of the receptor per cell, while ROS 2/3 contains only 500 binding sites per cell, and no detectable high-affinity 1,25-(OH)2D3 receptor is found in ROS 24/1. The receptor in ROS cells is indistinguishable from other mammalian 1,25-(OH)2D3 receptors in that it is a DNA-binding protein that sediments on sucrose gradients at 3.3S, and specifically binds the hormone with high affinity (K(d) = 2 to 3 x 10-11 M). Since the biological responses of these three cell lines to 1,25-(OH)2D3 exhibit a strong correlation with the respective number of receptor molecules per cell, we propose that the actions of this hormone are mediated by the specific 1,25-(OH)2D3 receptor.

AB - We have characterized the effects of the steroid hormone 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] on a series of rat osteogenic sarcoma cell lines of increasing osteoblastic-like nature (ROS 24/1, ROS 2/3, and ROS 17/2.8). When these cells were grown in monolayer culture in the presence of 10 nM 1,25-(OH)2D3, there was a dramatic and selective inhibition of proliferation in the ROS 17/2.8 line. Similar concentrations of other vitamin D metabolites did not elicit this effect. Furthermore, the aggregated cuboidal ROS 17/2.8 cells showed a marked change after 6 days of treatment with 10 nM 1,25-(OH)2D3 to an apparently less transformed spindle-like morphology. In contrast, ROS 2/3 displayed only a slight morphological alteration, and ROS 24/1 was unchanged by treatment with 1,25-(OH)2D3. Anchorage-independent growth studies performed in soft agar indicated that 1,25-(OH)2D3 inhibited colony formation to the greatest degree in ROS 17/2.8, with a lesser effect in ROS 2/3. Based upon analyses by sucrose gradient centrifugation, DNA cellulose chromatography, and saturation of specific binding, the level of the 1,25-(OH)2D3 receptor was quantitated in these cells. ROS 17/2.8 cells possess 18,000 copies of the receptor per cell, while ROS 2/3 contains only 500 binding sites per cell, and no detectable high-affinity 1,25-(OH)2D3 receptor is found in ROS 24/1. The receptor in ROS cells is indistinguishable from other mammalian 1,25-(OH)2D3 receptors in that it is a DNA-binding protein that sediments on sucrose gradients at 3.3S, and specifically binds the hormone with high affinity (K(d) = 2 to 3 x 10-11 M). Since the biological responses of these three cell lines to 1,25-(OH)2D3 exhibit a strong correlation with the respective number of receptor molecules per cell, we propose that the actions of this hormone are mediated by the specific 1,25-(OH)2D3 receptor.

UR - http://www.scopus.com/inward/record.url?scp=0021363706&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0021363706&partnerID=8YFLogxK

M3 - Article

C2 - 6324995

AN - SCOPUS:0021363706

VL - 44

SP - 2103

EP - 2109

JO - Journal of Cancer Research

JF - Journal of Cancer Research

SN - 0099-7013

IS - 5

ER -