Inherited Bacteroidetes symbionts in arthropods

Martha S Hunter, Einat Zchori-Fein

Research output: Chapter in Book/Report/Conference proceedingChapter

14 Citations (Scopus)

Abstract

The variety of partnerships between eukaryotes and prokaryotes is astounding in the arthropods, where bacteria live within body cavities, somatic cells, and germ line cells, and perform a vast array of functions. The taxonomic diversity of the prokaryotes inhabiting arthropod guts is extremely broad, and distributed among the Bacteria and Archea (Brauman et al., 2001; Dillon and Dillon, 2004) . This chapter, however, focuses on the more specialized intracellular symbionts, with exclusive or almost exclusive transmission from mother to offspring. Intracellular symbionts must possess adaptations for living within eukaryotic cells, and be able to recognize and invade germ line cells or segregate to the germ region in early embryos. Also, strictly vertically transmitted symbionts will only spread in a population if infected host females produce more infected daughters than uninfected host females produce (uninfected) daughters (Bull, 1983). Thus, inherited symbionts must either contribute directly to the fitness of their hosts or manipulate host reproduction in ways that increase the relative number or fitness of females. Because of the specialization required in living within the cell, as well as in vertical transmission, the number of lineages involved in this lifestyle appears limited. Many inherited symbionts are in the Proteobacteria, where the closest relatives to mitochondria are found. Some arthropod symbionts in the Proteobacteria that are required for host nutrition include Buchnera, Wiggleworthia, Blochmannia, Carsonella, Tremblaya, Nardonella, and Portiera (Munson et al., 1991; Aksoy, 1995; Sauer et al., 2000; Thao et al., 2000; Thao et al., 2002; Lefevre et al., 2004; Thao and Baumann, 2004). Facultatively associated arthropod symbionts in the Proteobacteria include Wolbachia, Rickettsia, Arsenophonus, Sodalis, Hamiltonella, and Regiella (Gherna et al., 1991; Dale and Maudlin, 1999; Moran et al., 2005a). In recent years, inherited arthropod symbionts have been discovered in groups such as Spiroplasma (Mollicutes within the Firmicutes) (Ludwig and Klenk, 2001) and Chlamydia, a small phylum of largely vertebrate pathogens (Corsaro and Venditti, 2004). Nowhere has there been a greater burst of discovery of symbionts, however, than in the Bacteroidetes (= Cytophaga-Flexibacter-Bacteroides, or CFB).

Original languageEnglish (US)
Title of host publicationInsect Symbiosis
PublisherCRC Press
Pages39-56
Number of pages18
Volume2
ISBN (Electronic)9781420005936
ISBN (Print)0849341949, 9780849341946
DOIs
StatePublished - Jan 1 2006

Fingerprint

Bacteroidetes
Arthropods
symbionts
arthropods
Proteobacteria
Nuclear Family
Germ Cells
Buchnera
Flexibacter
Spiroplasma
Tenericutes
Cytophaga
Wolbachia
Bacteria
Rickettsia
Bacteroides
Chlamydia
prokaryotic cells
Archaea
Eukaryotic Cells

ASJC Scopus subject areas

  • Agricultural and Biological Sciences(all)
  • Immunology and Microbiology(all)

Cite this

Hunter, M. S., & Zchori-Fein, E. (2006). Inherited Bacteroidetes symbionts in arthropods. In Insect Symbiosis (Vol. 2, pp. 39-56). CRC Press. https://doi.org/10.1201/9781420005936

Inherited Bacteroidetes symbionts in arthropods. / Hunter, Martha S; Zchori-Fein, Einat.

Insect Symbiosis. Vol. 2 CRC Press, 2006. p. 39-56.

Research output: Chapter in Book/Report/Conference proceedingChapter

Hunter, MS & Zchori-Fein, E 2006, Inherited Bacteroidetes symbionts in arthropods. in Insect Symbiosis. vol. 2, CRC Press, pp. 39-56. https://doi.org/10.1201/9781420005936
Hunter MS, Zchori-Fein E. Inherited Bacteroidetes symbionts in arthropods. In Insect Symbiosis. Vol. 2. CRC Press. 2006. p. 39-56 https://doi.org/10.1201/9781420005936
Hunter, Martha S ; Zchori-Fein, Einat. / Inherited Bacteroidetes symbionts in arthropods. Insect Symbiosis. Vol. 2 CRC Press, 2006. pp. 39-56
@inbook{91618de8c15549b68f5b99f8d729a7d1,
title = "Inherited Bacteroidetes symbionts in arthropods",
abstract = "The variety of partnerships between eukaryotes and prokaryotes is astounding in the arthropods, where bacteria live within body cavities, somatic cells, and germ line cells, and perform a vast array of functions. The taxonomic diversity of the prokaryotes inhabiting arthropod guts is extremely broad, and distributed among the Bacteria and Archea (Brauman et al., 2001; Dillon and Dillon, 2004) . This chapter, however, focuses on the more specialized intracellular symbionts, with exclusive or almost exclusive transmission from mother to offspring. Intracellular symbionts must possess adaptations for living within eukaryotic cells, and be able to recognize and invade germ line cells or segregate to the germ region in early embryos. Also, strictly vertically transmitted symbionts will only spread in a population if infected host females produce more infected daughters than uninfected host females produce (uninfected) daughters (Bull, 1983). Thus, inherited symbionts must either contribute directly to the fitness of their hosts or manipulate host reproduction in ways that increase the relative number or fitness of females. Because of the specialization required in living within the cell, as well as in vertical transmission, the number of lineages involved in this lifestyle appears limited. Many inherited symbionts are in the Proteobacteria, where the closest relatives to mitochondria are found. Some arthropod symbionts in the Proteobacteria that are required for host nutrition include Buchnera, Wiggleworthia, Blochmannia, Carsonella, Tremblaya, Nardonella, and Portiera (Munson et al., 1991; Aksoy, 1995; Sauer et al., 2000; Thao et al., 2000; Thao et al., 2002; Lefevre et al., 2004; Thao and Baumann, 2004). Facultatively associated arthropod symbionts in the Proteobacteria include Wolbachia, Rickettsia, Arsenophonus, Sodalis, Hamiltonella, and Regiella (Gherna et al., 1991; Dale and Maudlin, 1999; Moran et al., 2005a). In recent years, inherited arthropod symbionts have been discovered in groups such as Spiroplasma (Mollicutes within the Firmicutes) (Ludwig and Klenk, 2001) and Chlamydia, a small phylum of largely vertebrate pathogens (Corsaro and Venditti, 2004). Nowhere has there been a greater burst of discovery of symbionts, however, than in the Bacteroidetes (= Cytophaga-Flexibacter-Bacteroides, or CFB).",
author = "Hunter, {Martha S} and Einat Zchori-Fein",
year = "2006",
month = "1",
day = "1",
doi = "10.1201/9781420005936",
language = "English (US)",
isbn = "0849341949",
volume = "2",
pages = "39--56",
booktitle = "Insect Symbiosis",
publisher = "CRC Press",

}

TY - CHAP

T1 - Inherited Bacteroidetes symbionts in arthropods

AU - Hunter, Martha S

AU - Zchori-Fein, Einat

PY - 2006/1/1

Y1 - 2006/1/1

N2 - The variety of partnerships between eukaryotes and prokaryotes is astounding in the arthropods, where bacteria live within body cavities, somatic cells, and germ line cells, and perform a vast array of functions. The taxonomic diversity of the prokaryotes inhabiting arthropod guts is extremely broad, and distributed among the Bacteria and Archea (Brauman et al., 2001; Dillon and Dillon, 2004) . This chapter, however, focuses on the more specialized intracellular symbionts, with exclusive or almost exclusive transmission from mother to offspring. Intracellular symbionts must possess adaptations for living within eukaryotic cells, and be able to recognize and invade germ line cells or segregate to the germ region in early embryos. Also, strictly vertically transmitted symbionts will only spread in a population if infected host females produce more infected daughters than uninfected host females produce (uninfected) daughters (Bull, 1983). Thus, inherited symbionts must either contribute directly to the fitness of their hosts or manipulate host reproduction in ways that increase the relative number or fitness of females. Because of the specialization required in living within the cell, as well as in vertical transmission, the number of lineages involved in this lifestyle appears limited. Many inherited symbionts are in the Proteobacteria, where the closest relatives to mitochondria are found. Some arthropod symbionts in the Proteobacteria that are required for host nutrition include Buchnera, Wiggleworthia, Blochmannia, Carsonella, Tremblaya, Nardonella, and Portiera (Munson et al., 1991; Aksoy, 1995; Sauer et al., 2000; Thao et al., 2000; Thao et al., 2002; Lefevre et al., 2004; Thao and Baumann, 2004). Facultatively associated arthropod symbionts in the Proteobacteria include Wolbachia, Rickettsia, Arsenophonus, Sodalis, Hamiltonella, and Regiella (Gherna et al., 1991; Dale and Maudlin, 1999; Moran et al., 2005a). In recent years, inherited arthropod symbionts have been discovered in groups such as Spiroplasma (Mollicutes within the Firmicutes) (Ludwig and Klenk, 2001) and Chlamydia, a small phylum of largely vertebrate pathogens (Corsaro and Venditti, 2004). Nowhere has there been a greater burst of discovery of symbionts, however, than in the Bacteroidetes (= Cytophaga-Flexibacter-Bacteroides, or CFB).

AB - The variety of partnerships between eukaryotes and prokaryotes is astounding in the arthropods, where bacteria live within body cavities, somatic cells, and germ line cells, and perform a vast array of functions. The taxonomic diversity of the prokaryotes inhabiting arthropod guts is extremely broad, and distributed among the Bacteria and Archea (Brauman et al., 2001; Dillon and Dillon, 2004) . This chapter, however, focuses on the more specialized intracellular symbionts, with exclusive or almost exclusive transmission from mother to offspring. Intracellular symbionts must possess adaptations for living within eukaryotic cells, and be able to recognize and invade germ line cells or segregate to the germ region in early embryos. Also, strictly vertically transmitted symbionts will only spread in a population if infected host females produce more infected daughters than uninfected host females produce (uninfected) daughters (Bull, 1983). Thus, inherited symbionts must either contribute directly to the fitness of their hosts or manipulate host reproduction in ways that increase the relative number or fitness of females. Because of the specialization required in living within the cell, as well as in vertical transmission, the number of lineages involved in this lifestyle appears limited. Many inherited symbionts are in the Proteobacteria, where the closest relatives to mitochondria are found. Some arthropod symbionts in the Proteobacteria that are required for host nutrition include Buchnera, Wiggleworthia, Blochmannia, Carsonella, Tremblaya, Nardonella, and Portiera (Munson et al., 1991; Aksoy, 1995; Sauer et al., 2000; Thao et al., 2000; Thao et al., 2002; Lefevre et al., 2004; Thao and Baumann, 2004). Facultatively associated arthropod symbionts in the Proteobacteria include Wolbachia, Rickettsia, Arsenophonus, Sodalis, Hamiltonella, and Regiella (Gherna et al., 1991; Dale and Maudlin, 1999; Moran et al., 2005a). In recent years, inherited arthropod symbionts have been discovered in groups such as Spiroplasma (Mollicutes within the Firmicutes) (Ludwig and Klenk, 2001) and Chlamydia, a small phylum of largely vertebrate pathogens (Corsaro and Venditti, 2004). Nowhere has there been a greater burst of discovery of symbionts, however, than in the Bacteroidetes (= Cytophaga-Flexibacter-Bacteroides, or CFB).

UR - http://www.scopus.com/inward/record.url?scp=85035322972&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85035322972&partnerID=8YFLogxK

U2 - 10.1201/9781420005936

DO - 10.1201/9781420005936

M3 - Chapter

SN - 0849341949

SN - 9780849341946

VL - 2

SP - 39

EP - 56

BT - Insect Symbiosis

PB - CRC Press

ER -