Into the blue: AO science in the visible with MagAO

Laird M Close, J. R. Males, K. Morzinski, D. Kopon, K. Follette, T. J. Rodigas, Philip M Hinz, Y. L. Wu, A. Puglisi, S. Esposito, A. Riccardi, E. Pinna, M. Xompero, R. Briguglio, A. Uomoto, T. Hare

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

We utilized the new high-order (250-378 mode)Magellan Adaptive Optics system (MagAO) to obtain very high spatial resolution observations in "visible light" with MagAO's VisAO CCD camera. In the good-median seeing conditions of Magellan (0.5 - 0.7″) we find MagAO delivers individual short exposure images as good as 19 mas optical resolution. Due to telescope vibrations, long exposure (60s) r' (0.63μm) images are slightly coarser at FWHM=23-29 mas (Strehl ~ 28%) with bright (R < 9 mag) guide stars. These are the highest resolution filled-aperture images published to date. Images of the young (~ 1 Myr) Orion Trapezium θ1 Ori A, B, and C cluster members were obtained with VisAO. In particular, the 32 mas binary θ1 Ori C1C2 was easily resolved in non-interferometric images for the first time. Relative positions of the bright trapezium binary stars were measured with ~ 0.6 - 5 mas accuracy. We now are sensitive to relative proper motions of just ~ 0.2 mas/yr (~ 0.4 km/s at 414 pc) - this is a ~ 2 - 10× improvement in orbital velocity accuracy compared to previous efforts. For the first time, we see clear motion of the barycenter of θ1 Ori B2B3 about θ1 Ori B1. All five members of the θ1 Ori B system appear likely a gravitationally bound "mini-cluster", but we find that not all the orbits can be both circular and co-planar. The lowest mass member of the θ1 Ori B system (B4; mass ~ 0.2Msun) has a very clearly detected motion (at 4.1 ± 1.3 km/s; correlation=99.9%) w.r.t B1. Previous work has suggested that B4 and B3 are on long-term unstable orbits and will be ejected from this "mini-cluster". However, our new "baseline" model of the θ1 Ori B system suggests a more hierarchical system than previously thought, and so the ejection of B4 may not occur for many orbits, and B3 may be stable against ejection long-term. This "ejection" process of the lowest mass member of a "mini-cluster" could play a major role in the formation of low mass stars and brown dwarfs.

Original languageEnglish (US)
Title of host publication3rd AO4ELT Conference - Adaptive Optics for Extremely Large Telescopes
PublisherINAF - Osservatorio Astrofisico di Arcetri Largo Enrico Fermi
ISBN (Print)9788890887604
DOIs
Publication statusPublished - 2013
Event3rd Conference on Adaptive Optics for Extremely Large Telescopes, AO4ELT 2013 - Florence, Italy
Duration: May 26 2013May 31 2013

Other

Other3rd Conference on Adaptive Optics for Extremely Large Telescopes, AO4ELT 2013
CountryItaly
CityFlorence
Period5/26/135/31/13

    Fingerprint

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics

Cite this

Close, L. M., Males, J. R., Morzinski, K., Kopon, D., Follette, K., Rodigas, T. J., ... Hare, T. (2013). Into the blue: AO science in the visible with MagAO. In 3rd AO4ELT Conference - Adaptive Optics for Extremely Large Telescopes INAF - Osservatorio Astrofisico di Arcetri Largo Enrico Fermi. https://doi.org/10.12839/AO4ELT3.13387