Introduced species dominate different responses of grassland communities to climate change on serpentine and nonserpentine soils

Joseph E. Braasch, Maria A. Johnson, Susan P. Harrison, Katrina M. Dlugosch

Research output: Contribution to journalArticlepeer-review

Abstract

Introduced species are a common feature of modern plant communities and experience environmental challenges alongside native species. Changes to the environment may reveal distinct species-environment relationships for native and introduced components of plant communities. Extreme environmental change, such as drought, is predicted to result in declines in native species and increased opportunities for invasion, but empirical support for these ideas remains mixed. We tested for differences in the response of native and invaded species to environmental changes by analyzing a longterm dataset of species abundance in California grasslands collected during a period of severe drought. Sampling sites included a combination of stressful serpentine soils, which are resilient against invasion and maintain diverse native species assemblages, and more benign nonserpentine soils, which are heavily invaded and harbor low levels of native species cover. We found a significant correlation between sampling year and species composition for nonserpentine sites, but not for serpentine sites. These patterns were repeated when only introduced species were included in the analysis but no pattern of change was found for native species. The species most strongly associated with directional change on nonserpentine soils were three invasive Eurasian grasses, Bromus hordaceus, Taeniatherium caput-medusae, and Avena fatua. Differences in species composition on both serpentine and nonserpentine soils were significantly correlated with specific leaf area, a trait which has been linked to drought tolerance in these communities, although changes in abundance for the three Eurasian grasses most strongly associated with change did not consistently follow this pattern. Our analyses indicate relatively stable native community composition and strong directional change in introduced species composition, contradicting predictions for how native and introduced species will respond to environmental shifts, but supporting the hypothesis that native and invading species groups have important functional differences that shape their relationships to the environment.

Original languageEnglish (US)
JournalUnknown Journal
DOIs
StatePublished - Nov 15 2019

Keywords

  • Climate Change
  • Community Ecology
  • Functional Niche
  • Introduced Species
  • Invasion Traits

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • Immunology and Microbiology(all)
  • Neuroscience(all)
  • Pharmacology, Toxicology and Pharmaceutics(all)

Fingerprint Dive into the research topics of 'Introduced species dominate different responses of grassland communities to climate change on serpentine and nonserpentine soils'. Together they form a unique fingerprint.

Cite this