Investigation of the marine boundary layer cloud and CCN properties under coupled and decoupled conditions over the azores

Xiquan Dong, Adam C. Schwantes, Baike Xi, Peng Wu

Research output: Contribution to journalArticlepeer-review

19 Scopus citations

Abstract

Six coupled and decoupled marine boundary layer (MBL) clouds were chosen from the 19 month Atmospheric Radiation Measurement Mobile Facility data set over the Azores. Thresholds of liquid water potential temperature difference ΔθL < 0.5 K (>0.5 K) and total water mixing ratio difference Δqt < 0.5 g/kg (>0.5 g/kg) below the cloud base were used for selecting the coupled (decoupled) cases. A schematic diagram was given to demonstrate the coupled and decoupled MBL vertical structures and how they associate with nondrizzle, virga, and rain drizzle events. Out of a total of 2676 5 min samples, 34.5% were classified as coupled and 65.5% as decoupled, 36.2% as nondrizzle and 63.8% as drizzle (47.7% as virga and 16.1% as rain), and 33.4% as daytime and 66.6% as nighttime. The decoupled cloud layer is deeper (0.406 km) than coupled cloud layer (0.304 km), and its liquid water path and cloud droplet effective radius (re) values (122.1 gm-2 and 13.0 μm) are higher than coupled ones (83.7 gm-2 and 10.4 μm). Conversely, decoupled stratocumuli have lower cloud droplet number concentration (Nd) and surface cloud condensation nucleus (CCN) concentration (NCCN) (74.5 cm-3 and 150.9 cm-3) than coupled stratocumuli (111.7 cm-3 and 216.4 cm-3). The linear regressions between re and Nd with NCCN have demonstrated that coupled re and Nd strongly depend on NCCN and have higher correlations (-0.56 and 0.59) with NCCN than decoupled results (-0.14 and 0.25). The MBL cloud properties under nondrizzle and virga drizzle conditions are similar to each other but significantly different to those of rain drizzle.

Original languageEnglish (US)
Pages (from-to)6179-6191
Number of pages13
JournalJournal of geophysical research
Volume120
Issue number12
DOIs
StatePublished - 2015
Externally publishedYes

ASJC Scopus subject areas

  • Geophysics
  • Oceanography
  • Forestry
  • Aquatic Science
  • Ecology
  • Water Science and Technology
  • Soil Science
  • Geochemistry and Petrology
  • Earth-Surface Processes
  • Atmospheric Science
  • Space and Planetary Science
  • Earth and Planetary Sciences (miscellaneous)
  • Palaeontology

Fingerprint

Dive into the research topics of 'Investigation of the marine boundary layer cloud and CCN properties under coupled and decoupled conditions over the azores'. Together they form a unique fingerprint.

Cite this