Isotope shifts of the 1s22s2(1S0) → 1s22p2(1S0) transition in the doubly ionized carbon ion C2+

Sergiy Bubin, Jacek Komasa, Monika Stanke, Ludwik Adamowicz

Research output: Contribution to journalArticle

16 Scopus citations

Abstract

Highly accurate quantum mechanical calculations are performed for the 1s22s2 (1S0) → 1s22p2 (1S0) transition energy in the isotopomers of C 2 ion to determine the isotope shifts. Explicitly correlated Gaussian functions and a variational approach that explicitly includes the nuclear motion are employed in the calculations. The leading relativistic and quantum electrodynamics corrections to the transition energy are also calculated using the perturbation theory with the nonrelativistic wave function as the zero-order approximation. It is determined that the 12C2+ transitions energy, which is obtained from the calculations to be 182 519.031 cm-1 (vs the experimental value of 182 519.88 cm-1, an excellent sub-wave-number agreement) up-shifts by 1.755 cm-1 for 13C 2+ and by additional 1.498 cm-1 for 14C2+. Those shifts are sufficiently large to be measured experimentally.

Original languageEnglish (US)
Article number052504
JournalPhysical Review A - Atomic, Molecular, and Optical Physics
Volume81
Issue number5
DOIs
StatePublished - May 14 2010

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics

Fingerprint Dive into the research topics of 'Isotope shifts of the 1s22s2(1S0) → 1s22p2(1S0) transition in the doubly ionized carbon ion C<sup>2+</sup>'. Together they form a unique fingerprint.

  • Cite this