Kaluza-Klein towers in the early universe

Phase transitions, relic abundances, and applications to axion cosmology

Keith R Dienes, Jeff Kost, Brooks Thomas

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

We study the early-universe cosmology of a Kaluza-Klein (KK) tower of scalar fields in the presence of a mass-generating phase transition, focusing on the time development of the total tower energy density (or relic abundance) as well as its distribution across the different KK modes. We find that both of these features are extremely sensitive to the details of the phase transition and can behave in a variety of ways significant for late-time cosmology. In particular, we find that the interplay between the temporal properties of the phase transition and the mixing it generates are responsible for both enhancements and suppressions in the late-time abundances, sometimes by many orders of magnitude. We map out the complete model parameter space and determine where traditional analytical approximations are valid and where they fail. In the latter cases we also provide new analytical approximations which successfully model our results. Finally, we apply this machinery to the example of an axion-like field in the bulk, mapping these phenomena over an enlarged axion parameter space that extends beyond that accessible to standard treatments. An important by-product of our analysis is the development of an alternate "UV-based" effective truncation of KK theories which has a number of interesting theoretical properties that distinguish it from the more traditional "IR-based" truncation typically used in the extra-dimension literature.

Original languageEnglish (US)
JournalPhysical Review D
Volume95
Issue number12
DOIs
StatePublished - Jun 15 2017

Fingerprint

towers
cosmology
universe
approximation
machinery
flux density
retarding
scalars
augmentation

ASJC Scopus subject areas

  • Physics and Astronomy (miscellaneous)

Cite this

Kaluza-Klein towers in the early universe : Phase transitions, relic abundances, and applications to axion cosmology. / Dienes, Keith R; Kost, Jeff; Thomas, Brooks.

In: Physical Review D, Vol. 95, No. 12, 15.06.2017.

Research output: Contribution to journalArticle

@article{f16a60a080394fc89ae204db3faaa9da,
title = "Kaluza-Klein towers in the early universe: Phase transitions, relic abundances, and applications to axion cosmology",
abstract = "We study the early-universe cosmology of a Kaluza-Klein (KK) tower of scalar fields in the presence of a mass-generating phase transition, focusing on the time development of the total tower energy density (or relic abundance) as well as its distribution across the different KK modes. We find that both of these features are extremely sensitive to the details of the phase transition and can behave in a variety of ways significant for late-time cosmology. In particular, we find that the interplay between the temporal properties of the phase transition and the mixing it generates are responsible for both enhancements and suppressions in the late-time abundances, sometimes by many orders of magnitude. We map out the complete model parameter space and determine where traditional analytical approximations are valid and where they fail. In the latter cases we also provide new analytical approximations which successfully model our results. Finally, we apply this machinery to the example of an axion-like field in the bulk, mapping these phenomena over an enlarged axion parameter space that extends beyond that accessible to standard treatments. An important by-product of our analysis is the development of an alternate {"}UV-based{"} effective truncation of KK theories which has a number of interesting theoretical properties that distinguish it from the more traditional {"}IR-based{"} truncation typically used in the extra-dimension literature.",
author = "Dienes, {Keith R} and Jeff Kost and Brooks Thomas",
year = "2017",
month = "6",
day = "15",
doi = "10.1103/PhysRevD.95.123539",
language = "English (US)",
volume = "95",
journal = "Physical Review D",
issn = "2470-0010",
publisher = "American Physical Society",
number = "12",

}

TY - JOUR

T1 - Kaluza-Klein towers in the early universe

T2 - Phase transitions, relic abundances, and applications to axion cosmology

AU - Dienes, Keith R

AU - Kost, Jeff

AU - Thomas, Brooks

PY - 2017/6/15

Y1 - 2017/6/15

N2 - We study the early-universe cosmology of a Kaluza-Klein (KK) tower of scalar fields in the presence of a mass-generating phase transition, focusing on the time development of the total tower energy density (or relic abundance) as well as its distribution across the different KK modes. We find that both of these features are extremely sensitive to the details of the phase transition and can behave in a variety of ways significant for late-time cosmology. In particular, we find that the interplay between the temporal properties of the phase transition and the mixing it generates are responsible for both enhancements and suppressions in the late-time abundances, sometimes by many orders of magnitude. We map out the complete model parameter space and determine where traditional analytical approximations are valid and where they fail. In the latter cases we also provide new analytical approximations which successfully model our results. Finally, we apply this machinery to the example of an axion-like field in the bulk, mapping these phenomena over an enlarged axion parameter space that extends beyond that accessible to standard treatments. An important by-product of our analysis is the development of an alternate "UV-based" effective truncation of KK theories which has a number of interesting theoretical properties that distinguish it from the more traditional "IR-based" truncation typically used in the extra-dimension literature.

AB - We study the early-universe cosmology of a Kaluza-Klein (KK) tower of scalar fields in the presence of a mass-generating phase transition, focusing on the time development of the total tower energy density (or relic abundance) as well as its distribution across the different KK modes. We find that both of these features are extremely sensitive to the details of the phase transition and can behave in a variety of ways significant for late-time cosmology. In particular, we find that the interplay between the temporal properties of the phase transition and the mixing it generates are responsible for both enhancements and suppressions in the late-time abundances, sometimes by many orders of magnitude. We map out the complete model parameter space and determine where traditional analytical approximations are valid and where they fail. In the latter cases we also provide new analytical approximations which successfully model our results. Finally, we apply this machinery to the example of an axion-like field in the bulk, mapping these phenomena over an enlarged axion parameter space that extends beyond that accessible to standard treatments. An important by-product of our analysis is the development of an alternate "UV-based" effective truncation of KK theories which has a number of interesting theoretical properties that distinguish it from the more traditional "IR-based" truncation typically used in the extra-dimension literature.

UR - http://www.scopus.com/inward/record.url?scp=85022323222&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85022323222&partnerID=8YFLogxK

U2 - 10.1103/PhysRevD.95.123539

DO - 10.1103/PhysRevD.95.123539

M3 - Article

VL - 95

JO - Physical Review D

JF - Physical Review D

SN - 2470-0010

IS - 12

ER -