Keeping the ball rolling: Fullerene-like molecular clusters

Xiang Jian Kong, La Sheng Long, Zhiping Zheng, Rong Bin Huang, Lan Sun Zheng

Research output: Contribution to journalArticle

190 Citations (Scopus)

Abstract

(Figure Presented) The discovery of fullerenes in 1985 opened a new chapter in the chemistry of highly symmetric molecules. Fullerene-like metal clusters, characterized by (multi)shell-like structures, are one rapidly developing class of molecules that share this shape. In addition to creating aesthetically pleasing molecular structures, the ordered arrangement of metal atoms within such frameworks provides the opportunity to develop materials with properties not readily achieved in corresponding mononuclear or lower-nuclearity complexes. In this Account, we survey the great variety of fullerene-like metal-containing clusters with an emphasis on their synthetic and structural chemistry, a first step in the discussion of this fascinating field of cluster chemistry. We group the compounds of interest into three categories based on the atomic composition of the duster core: those with formal metal-metal bonding, those characterized by ligand participation, and those supported by polyoxometalate building blocks. The number of clusters in the first group, containing metal-metal bonds, is relatively small. However, because of the unique and complex bonding scenarios observed for some of these species, these metalloid clusters present a number of research questions with significant ramifications. Because these cores contain molecular clusters of precious metals at the nanoscale, they offer an opportunity to study chemical properties at size ranges from the molecular to nanoscale and to gain insights into the electronic structures and properties of nanomaterials of similar chemical compositions. Clusters of the second type, whose core structures are facilitated by ligand participation, could aid in the development of functional materials. Of particular interest are the magnetic clusters containing both transition and lanthanide elements. A series of such heterometallic clusters that we prepared demonstrates diverse magnetic properties including antiferromagnetism, ferrimagnetism, and ferromagnetism. Considering the diversity of their composition, their distinct electronic structures, and the disparate coordination behaviors of the different metal elements, these materials suggest abundant opportunities for designing multifunctional materials with varied structures. The third type of clusters that we discuss are based on polyoxometalates, in particular those containing pentagonal units. However, unlike in fullerene chemistry, which does not allow the use of discrete pentagonal building blocks, the metal oxidebased pentagonal units can be used as fundamental building blocks for constructing various Keplerate structures. These structures also have a variety of functions, including intriguing magnetic properties in some cases. Coupled with different linking groups, such pentagonal units can be used for the assembly of a large number of spherical molecules whose properties can be tuned and optimized. Although this Account focuses on the topological aspects of fullerene-like metal clusters, we hope that this topical review will stimulate more efforts in the exploratory synthesis of new fullerene-like clusters. More importantly, we hope that further study of the bonding interactions and properties of these molecules will lead to the development of new functional materials.

Original languageEnglish (US)
Pages (from-to)201-209
Number of pages9
JournalAccounts of Chemical Research
Volume43
Issue number2
DOIs
StatePublished - Feb 16 2010

Fingerprint

Fullerenes
Metals
Molecules
Functional materials
Electronic structure
Magnetic properties
Ferrimagnetism
Chemical analysis
Metalloids
Ligands
Antiferromagnetism
Lanthanoid Series Elements
Ferromagnetism
Precious metals
Nanostructured materials
Electronic properties
Chemical properties
Molecular structure

ASJC Scopus subject areas

  • Chemistry(all)

Cite this

Keeping the ball rolling : Fullerene-like molecular clusters. / Kong, Xiang Jian; Long, La Sheng; Zheng, Zhiping; Huang, Rong Bin; Zheng, Lan Sun.

In: Accounts of Chemical Research, Vol. 43, No. 2, 16.02.2010, p. 201-209.

Research output: Contribution to journalArticle

Kong, Xiang Jian ; Long, La Sheng ; Zheng, Zhiping ; Huang, Rong Bin ; Zheng, Lan Sun. / Keeping the ball rolling : Fullerene-like molecular clusters. In: Accounts of Chemical Research. 2010 ; Vol. 43, No. 2. pp. 201-209.
@article{a1856cec69094f9b9672ffe4798c63f4,
title = "Keeping the ball rolling: Fullerene-like molecular clusters",
abstract = "(Figure Presented) The discovery of fullerenes in 1985 opened a new chapter in the chemistry of highly symmetric molecules. Fullerene-like metal clusters, characterized by (multi)shell-like structures, are one rapidly developing class of molecules that share this shape. In addition to creating aesthetically pleasing molecular structures, the ordered arrangement of metal atoms within such frameworks provides the opportunity to develop materials with properties not readily achieved in corresponding mononuclear or lower-nuclearity complexes. In this Account, we survey the great variety of fullerene-like metal-containing clusters with an emphasis on their synthetic and structural chemistry, a first step in the discussion of this fascinating field of cluster chemistry. We group the compounds of interest into three categories based on the atomic composition of the duster core: those with formal metal-metal bonding, those characterized by ligand participation, and those supported by polyoxometalate building blocks. The number of clusters in the first group, containing metal-metal bonds, is relatively small. However, because of the unique and complex bonding scenarios observed for some of these species, these metalloid clusters present a number of research questions with significant ramifications. Because these cores contain molecular clusters of precious metals at the nanoscale, they offer an opportunity to study chemical properties at size ranges from the molecular to nanoscale and to gain insights into the electronic structures and properties of nanomaterials of similar chemical compositions. Clusters of the second type, whose core structures are facilitated by ligand participation, could aid in the development of functional materials. Of particular interest are the magnetic clusters containing both transition and lanthanide elements. A series of such heterometallic clusters that we prepared demonstrates diverse magnetic properties including antiferromagnetism, ferrimagnetism, and ferromagnetism. Considering the diversity of their composition, their distinct electronic structures, and the disparate coordination behaviors of the different metal elements, these materials suggest abundant opportunities for designing multifunctional materials with varied structures. The third type of clusters that we discuss are based on polyoxometalates, in particular those containing pentagonal units. However, unlike in fullerene chemistry, which does not allow the use of discrete pentagonal building blocks, the metal oxidebased pentagonal units can be used as fundamental building blocks for constructing various Keplerate structures. These structures also have a variety of functions, including intriguing magnetic properties in some cases. Coupled with different linking groups, such pentagonal units can be used for the assembly of a large number of spherical molecules whose properties can be tuned and optimized. Although this Account focuses on the topological aspects of fullerene-like metal clusters, we hope that this topical review will stimulate more efforts in the exploratory synthesis of new fullerene-like clusters. More importantly, we hope that further study of the bonding interactions and properties of these molecules will lead to the development of new functional materials.",
author = "Kong, {Xiang Jian} and Long, {La Sheng} and Zhiping Zheng and Huang, {Rong Bin} and Zheng, {Lan Sun}",
year = "2010",
month = "2",
day = "16",
doi = "10.1021/ar900089k",
language = "English (US)",
volume = "43",
pages = "201--209",
journal = "Accounts of Chemical Research",
issn = "0001-4842",
publisher = "American Chemical Society",
number = "2",

}

TY - JOUR

T1 - Keeping the ball rolling

T2 - Fullerene-like molecular clusters

AU - Kong, Xiang Jian

AU - Long, La Sheng

AU - Zheng, Zhiping

AU - Huang, Rong Bin

AU - Zheng, Lan Sun

PY - 2010/2/16

Y1 - 2010/2/16

N2 - (Figure Presented) The discovery of fullerenes in 1985 opened a new chapter in the chemistry of highly symmetric molecules. Fullerene-like metal clusters, characterized by (multi)shell-like structures, are one rapidly developing class of molecules that share this shape. In addition to creating aesthetically pleasing molecular structures, the ordered arrangement of metal atoms within such frameworks provides the opportunity to develop materials with properties not readily achieved in corresponding mononuclear or lower-nuclearity complexes. In this Account, we survey the great variety of fullerene-like metal-containing clusters with an emphasis on their synthetic and structural chemistry, a first step in the discussion of this fascinating field of cluster chemistry. We group the compounds of interest into three categories based on the atomic composition of the duster core: those with formal metal-metal bonding, those characterized by ligand participation, and those supported by polyoxometalate building blocks. The number of clusters in the first group, containing metal-metal bonds, is relatively small. However, because of the unique and complex bonding scenarios observed for some of these species, these metalloid clusters present a number of research questions with significant ramifications. Because these cores contain molecular clusters of precious metals at the nanoscale, they offer an opportunity to study chemical properties at size ranges from the molecular to nanoscale and to gain insights into the electronic structures and properties of nanomaterials of similar chemical compositions. Clusters of the second type, whose core structures are facilitated by ligand participation, could aid in the development of functional materials. Of particular interest are the magnetic clusters containing both transition and lanthanide elements. A series of such heterometallic clusters that we prepared demonstrates diverse magnetic properties including antiferromagnetism, ferrimagnetism, and ferromagnetism. Considering the diversity of their composition, their distinct electronic structures, and the disparate coordination behaviors of the different metal elements, these materials suggest abundant opportunities for designing multifunctional materials with varied structures. The third type of clusters that we discuss are based on polyoxometalates, in particular those containing pentagonal units. However, unlike in fullerene chemistry, which does not allow the use of discrete pentagonal building blocks, the metal oxidebased pentagonal units can be used as fundamental building blocks for constructing various Keplerate structures. These structures also have a variety of functions, including intriguing magnetic properties in some cases. Coupled with different linking groups, such pentagonal units can be used for the assembly of a large number of spherical molecules whose properties can be tuned and optimized. Although this Account focuses on the topological aspects of fullerene-like metal clusters, we hope that this topical review will stimulate more efforts in the exploratory synthesis of new fullerene-like clusters. More importantly, we hope that further study of the bonding interactions and properties of these molecules will lead to the development of new functional materials.

AB - (Figure Presented) The discovery of fullerenes in 1985 opened a new chapter in the chemistry of highly symmetric molecules. Fullerene-like metal clusters, characterized by (multi)shell-like structures, are one rapidly developing class of molecules that share this shape. In addition to creating aesthetically pleasing molecular structures, the ordered arrangement of metal atoms within such frameworks provides the opportunity to develop materials with properties not readily achieved in corresponding mononuclear or lower-nuclearity complexes. In this Account, we survey the great variety of fullerene-like metal-containing clusters with an emphasis on their synthetic and structural chemistry, a first step in the discussion of this fascinating field of cluster chemistry. We group the compounds of interest into three categories based on the atomic composition of the duster core: those with formal metal-metal bonding, those characterized by ligand participation, and those supported by polyoxometalate building blocks. The number of clusters in the first group, containing metal-metal bonds, is relatively small. However, because of the unique and complex bonding scenarios observed for some of these species, these metalloid clusters present a number of research questions with significant ramifications. Because these cores contain molecular clusters of precious metals at the nanoscale, they offer an opportunity to study chemical properties at size ranges from the molecular to nanoscale and to gain insights into the electronic structures and properties of nanomaterials of similar chemical compositions. Clusters of the second type, whose core structures are facilitated by ligand participation, could aid in the development of functional materials. Of particular interest are the magnetic clusters containing both transition and lanthanide elements. A series of such heterometallic clusters that we prepared demonstrates diverse magnetic properties including antiferromagnetism, ferrimagnetism, and ferromagnetism. Considering the diversity of their composition, their distinct electronic structures, and the disparate coordination behaviors of the different metal elements, these materials suggest abundant opportunities for designing multifunctional materials with varied structures. The third type of clusters that we discuss are based on polyoxometalates, in particular those containing pentagonal units. However, unlike in fullerene chemistry, which does not allow the use of discrete pentagonal building blocks, the metal oxidebased pentagonal units can be used as fundamental building blocks for constructing various Keplerate structures. These structures also have a variety of functions, including intriguing magnetic properties in some cases. Coupled with different linking groups, such pentagonal units can be used for the assembly of a large number of spherical molecules whose properties can be tuned and optimized. Although this Account focuses on the topological aspects of fullerene-like metal clusters, we hope that this topical review will stimulate more efforts in the exploratory synthesis of new fullerene-like clusters. More importantly, we hope that further study of the bonding interactions and properties of these molecules will lead to the development of new functional materials.

UR - http://www.scopus.com/inward/record.url?scp=77249118732&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77249118732&partnerID=8YFLogxK

U2 - 10.1021/ar900089k

DO - 10.1021/ar900089k

M3 - Article

C2 - 19764756

AN - SCOPUS:77249118732

VL - 43

SP - 201

EP - 209

JO - Accounts of Chemical Research

JF - Accounts of Chemical Research

SN - 0001-4842

IS - 2

ER -