Kinetic and Continuum Modeling of High-Temperature Oxygen and Nitrogen Binary Mixtures

Sergey F. Gimelshein, Ingrid J. Wysong, Alexander J. Fangman, Daniil A. Andrienko, Olga V. Kunova, Elena V. Kustova, Catarina Garbacz, Marco Fossati, Kyle Hanquist

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

The present paper provides a comprehensive comparative analysis of thermochemistry models of various fidelity levels developed in leading research groups around the world. Fully kinetic, hybrid kinetic–continuum, and fully continuum approaches are applied to analyze parameters of hypersonic flows starting from the revision of single-temperature rate constants up to the application in 1-D postshock conditions. Comparison of state-specific and two-temperature approaches shows there are very significant and often qualitative differences in the time-dependent nonequilibrium reaction rates and their ratio to the corresponding single-temperature rates. A major impact of the vibration–dissociation coupling on the temporal relaxation of gas properties is shown. For instance, the legacy Park’s model has a strongly nonlinear behavior of nonequilibrium reaction rate with vibrational temperature, while a nearly linear shape exists for all state-specific approaches. Analysis of vibrational level populations in the nonequilibrium region shows a profound impact of the numerical approach and the model on the population ratios, and thus vibrational temperatures inferred from such ratios. The difference in the ultraviolet absorption coefficients, calculated by a temperature-based spectral code using vibrational populations from state-specific and kinetic approaches, is found to exceed an order of magnitude.

Original languageEnglish (US)
Pages (from-to)399-418
Number of pages20
JournalJournal of Thermophysics and Heat Transfer
Volume36
Issue number2
DOIs
StatePublished - 2022

ASJC Scopus subject areas

  • Condensed Matter Physics
  • Aerospace Engineering
  • Mechanical Engineering
  • Fluid Flow and Transfer Processes
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Kinetic and Continuum Modeling of High-Temperature Oxygen and Nitrogen Binary Mixtures'. Together they form a unique fingerprint.

Cite this