Late Wisconsinan buildup and wastage of the Innuitian Ice Sheet across southern Ellesmere Island, Nunavut

John H. England, Nigel Atkinson, Arthur S. Dyke, David J A Evans, Marek G Zreda

Research output: Contribution to journalArticle

36 Citations (Scopus)

Abstract

During the Late Wisconsinan, a precursor of the Prince of Wales Icefield, southern Ellesmere Island, formed a prodigious ice divide of the Innuitian Ice Sheet. Initial buildup occurred after 19 ka BP, when the icefield advanced west (inland) across Makinson Inlet from margins similar to present. Subsequent reversal of flow to the east required ice divide migration to the west onto a plateau that is largely ice-free today. From this divide, a trunk glacier flowed eastward through Makinson Inlet to join the Smith Sound Ice Stream en route to nothern Baffin Bay. Westward flow from this divide filled Baumann Fiord, depositing a granite dispersal train that extends a further 600 km across the archipelago to the polar continental shelf. Deglaciation of most of Makinson Inlet occurred catastrophically at ∼9.3 ka BP, forming a calving bay that thinned the Innuitian divide, thereby triggering deglaciation of most of Baumann Fiord by 8.5 ka BP. Ninety 14C dates on Holocene shells and driftwood constrain deglacial isochrones and postglacial emergence curves on opposite sides of the former Innuitian divide. Isobases drawn on the 8 ka BP shoreline rise northwest towards Eureka Sound, the axis of maximum former ice thickness. Ice margins on Ellesmere Island were similar to present from ∼50-19 ka BP (spanning marine isotope stages 3 and 2). However, significant regional variation in ice extent during this interval is recorded by ice rafting from the Laurentide Ice Sheet into Baffin Bay. Later buildup of the Innuitian Ice Sheet occurred during the low global sea level that defines the last glacial maximum (18 ka BP). We also suggest that the Innuitian Ice Sheet was influenced by the buttressing and subsequent removal of the Greenland Ice Sheet along eastern Ellesmere Island.

Original languageEnglish (US)
Pages (from-to)39-61
Number of pages23
JournalCanadian Journal of Earth Sciences
Volume41
Issue number1
DOIs
StatePublished - Jan 2004

Fingerprint

ice sheet
ice
deglaciation
ice rafting
Laurentide Ice Sheet
ice margin
ice stream
marine isotope stage
ice thickness
Last Glacial Maximum
Postglacial
archipelago
train
continental shelf
shoreline
glacier
granite
Holocene
plateau
sea level

ASJC Scopus subject areas

  • Earth and Planetary Sciences (miscellaneous)

Cite this

Late Wisconsinan buildup and wastage of the Innuitian Ice Sheet across southern Ellesmere Island, Nunavut. / England, John H.; Atkinson, Nigel; Dyke, Arthur S.; Evans, David J A; Zreda, Marek G.

In: Canadian Journal of Earth Sciences, Vol. 41, No. 1, 01.2004, p. 39-61.

Research output: Contribution to journalArticle

England, John H. ; Atkinson, Nigel ; Dyke, Arthur S. ; Evans, David J A ; Zreda, Marek G. / Late Wisconsinan buildup and wastage of the Innuitian Ice Sheet across southern Ellesmere Island, Nunavut. In: Canadian Journal of Earth Sciences. 2004 ; Vol. 41, No. 1. pp. 39-61.
@article{2914d5bf2e704c7b8c165d1b987656c8,
title = "Late Wisconsinan buildup and wastage of the Innuitian Ice Sheet across southern Ellesmere Island, Nunavut",
abstract = "During the Late Wisconsinan, a precursor of the Prince of Wales Icefield, southern Ellesmere Island, formed a prodigious ice divide of the Innuitian Ice Sheet. Initial buildup occurred after 19 ka BP, when the icefield advanced west (inland) across Makinson Inlet from margins similar to present. Subsequent reversal of flow to the east required ice divide migration to the west onto a plateau that is largely ice-free today. From this divide, a trunk glacier flowed eastward through Makinson Inlet to join the Smith Sound Ice Stream en route to nothern Baffin Bay. Westward flow from this divide filled Baumann Fiord, depositing a granite dispersal train that extends a further 600 km across the archipelago to the polar continental shelf. Deglaciation of most of Makinson Inlet occurred catastrophically at ∼9.3 ka BP, forming a calving bay that thinned the Innuitian divide, thereby triggering deglaciation of most of Baumann Fiord by 8.5 ka BP. Ninety 14C dates on Holocene shells and driftwood constrain deglacial isochrones and postglacial emergence curves on opposite sides of the former Innuitian divide. Isobases drawn on the 8 ka BP shoreline rise northwest towards Eureka Sound, the axis of maximum former ice thickness. Ice margins on Ellesmere Island were similar to present from ∼50-19 ka BP (spanning marine isotope stages 3 and 2). However, significant regional variation in ice extent during this interval is recorded by ice rafting from the Laurentide Ice Sheet into Baffin Bay. Later buildup of the Innuitian Ice Sheet occurred during the low global sea level that defines the last glacial maximum (18 ka BP). We also suggest that the Innuitian Ice Sheet was influenced by the buttressing and subsequent removal of the Greenland Ice Sheet along eastern Ellesmere Island.",
author = "England, {John H.} and Nigel Atkinson and Dyke, {Arthur S.} and Evans, {David J A} and Zreda, {Marek G}",
year = "2004",
month = "1",
doi = "10.1139/e03-082",
language = "English (US)",
volume = "41",
pages = "39--61",
journal = "Canadian Journal of Earth Sciences",
issn = "0008-4077",
publisher = "National Research Council of Canada",
number = "1",

}

TY - JOUR

T1 - Late Wisconsinan buildup and wastage of the Innuitian Ice Sheet across southern Ellesmere Island, Nunavut

AU - England, John H.

AU - Atkinson, Nigel

AU - Dyke, Arthur S.

AU - Evans, David J A

AU - Zreda, Marek G

PY - 2004/1

Y1 - 2004/1

N2 - During the Late Wisconsinan, a precursor of the Prince of Wales Icefield, southern Ellesmere Island, formed a prodigious ice divide of the Innuitian Ice Sheet. Initial buildup occurred after 19 ka BP, when the icefield advanced west (inland) across Makinson Inlet from margins similar to present. Subsequent reversal of flow to the east required ice divide migration to the west onto a plateau that is largely ice-free today. From this divide, a trunk glacier flowed eastward through Makinson Inlet to join the Smith Sound Ice Stream en route to nothern Baffin Bay. Westward flow from this divide filled Baumann Fiord, depositing a granite dispersal train that extends a further 600 km across the archipelago to the polar continental shelf. Deglaciation of most of Makinson Inlet occurred catastrophically at ∼9.3 ka BP, forming a calving bay that thinned the Innuitian divide, thereby triggering deglaciation of most of Baumann Fiord by 8.5 ka BP. Ninety 14C dates on Holocene shells and driftwood constrain deglacial isochrones and postglacial emergence curves on opposite sides of the former Innuitian divide. Isobases drawn on the 8 ka BP shoreline rise northwest towards Eureka Sound, the axis of maximum former ice thickness. Ice margins on Ellesmere Island were similar to present from ∼50-19 ka BP (spanning marine isotope stages 3 and 2). However, significant regional variation in ice extent during this interval is recorded by ice rafting from the Laurentide Ice Sheet into Baffin Bay. Later buildup of the Innuitian Ice Sheet occurred during the low global sea level that defines the last glacial maximum (18 ka BP). We also suggest that the Innuitian Ice Sheet was influenced by the buttressing and subsequent removal of the Greenland Ice Sheet along eastern Ellesmere Island.

AB - During the Late Wisconsinan, a precursor of the Prince of Wales Icefield, southern Ellesmere Island, formed a prodigious ice divide of the Innuitian Ice Sheet. Initial buildup occurred after 19 ka BP, when the icefield advanced west (inland) across Makinson Inlet from margins similar to present. Subsequent reversal of flow to the east required ice divide migration to the west onto a plateau that is largely ice-free today. From this divide, a trunk glacier flowed eastward through Makinson Inlet to join the Smith Sound Ice Stream en route to nothern Baffin Bay. Westward flow from this divide filled Baumann Fiord, depositing a granite dispersal train that extends a further 600 km across the archipelago to the polar continental shelf. Deglaciation of most of Makinson Inlet occurred catastrophically at ∼9.3 ka BP, forming a calving bay that thinned the Innuitian divide, thereby triggering deglaciation of most of Baumann Fiord by 8.5 ka BP. Ninety 14C dates on Holocene shells and driftwood constrain deglacial isochrones and postglacial emergence curves on opposite sides of the former Innuitian divide. Isobases drawn on the 8 ka BP shoreline rise northwest towards Eureka Sound, the axis of maximum former ice thickness. Ice margins on Ellesmere Island were similar to present from ∼50-19 ka BP (spanning marine isotope stages 3 and 2). However, significant regional variation in ice extent during this interval is recorded by ice rafting from the Laurentide Ice Sheet into Baffin Bay. Later buildup of the Innuitian Ice Sheet occurred during the low global sea level that defines the last glacial maximum (18 ka BP). We also suggest that the Innuitian Ice Sheet was influenced by the buttressing and subsequent removal of the Greenland Ice Sheet along eastern Ellesmere Island.

UR - http://www.scopus.com/inward/record.url?scp=1842427457&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=1842427457&partnerID=8YFLogxK

U2 - 10.1139/e03-082

DO - 10.1139/e03-082

M3 - Article

AN - SCOPUS:1842427457

VL - 41

SP - 39

EP - 61

JO - Canadian Journal of Earth Sciences

JF - Canadian Journal of Earth Sciences

SN - 0008-4077

IS - 1

ER -