Later flowering is associated with a compressed flowering season and reduced reproductive output in an early season floral resource

Nicole E. Rafferty, C. David Bertelsen, Judith L Bronstein

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

Climate change-induced shifts in flowering phenology can expose plants to novel biotic and abiotic environments, potentially leading to decreased temporal overlap with pollinators and exposure to conditions that negatively affect fruit and seed set. We explored the relationship between flowering phenology and reproductive output in the common shrub pointleaf manzanita Arctostaphylos pungens in a lower montane habitat in southeastern Arizona, USA. Contrary to the pattern of progressively earlier flowering observed in many species, long-term records show that A. pungens flowering onset is shifting later and the flowering season is being compressed. This species can thus provide unusual insight into the effects of altered phenology. To determine the consequences of among- and within-plant variation in flowering time, we documented individual flowering schedules and followed the fates of flowers on over 50 plants throughout two seasons (2012 and 2013). We also measured visitation rates by potential pollinators in 2012, as well as both fruit mass and seeds per fruit of flowers produced at different times. Fruit set was positively related to visitation rate but declined with later dates of flower production in both years. Total fruit production per plant was positively influenced by flowering duration, which declined with later flowering onset, as did fruit mass. Individual flowering schedules were consistent between years, suggesting that plants that begin flowering late have lower reproductive output each year. These patterns suggest that if pointleaf manzanita flowering continues to shift later, its flowering season may continue to become shorter, compressing floral resource availability for pollinators and leading to reduced reproductive output. These results reveal the negative effects of delayed phenology on reproductive output in a long-lived plant. They highlight the value of using natural variation in flowering time, in combination with long-term data, to anticipate the consequences of phenological shifts.

Original languageEnglish (US)
JournalOikos
DOIs
StateAccepted/In press - 2015

Fingerprint

flowering
reproductive performance
resource
phenology
pollinators
pollinator
flower
fruit set
fruit
flowers
fruits
Arctostaphylos
fruit production
seed set
resource availability
fruiting
Angiospermae
shrubs
shrub
climate change

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics

Cite this

Later flowering is associated with a compressed flowering season and reduced reproductive output in an early season floral resource. / Rafferty, Nicole E.; Bertelsen, C. David; Bronstein, Judith L.

In: Oikos, 2015.

Research output: Contribution to journalArticle

@article{3b20a583df91407ca635260f4b169da4,
title = "Later flowering is associated with a compressed flowering season and reduced reproductive output in an early season floral resource",
abstract = "Climate change-induced shifts in flowering phenology can expose plants to novel biotic and abiotic environments, potentially leading to decreased temporal overlap with pollinators and exposure to conditions that negatively affect fruit and seed set. We explored the relationship between flowering phenology and reproductive output in the common shrub pointleaf manzanita Arctostaphylos pungens in a lower montane habitat in southeastern Arizona, USA. Contrary to the pattern of progressively earlier flowering observed in many species, long-term records show that A. pungens flowering onset is shifting later and the flowering season is being compressed. This species can thus provide unusual insight into the effects of altered phenology. To determine the consequences of among- and within-plant variation in flowering time, we documented individual flowering schedules and followed the fates of flowers on over 50 plants throughout two seasons (2012 and 2013). We also measured visitation rates by potential pollinators in 2012, as well as both fruit mass and seeds per fruit of flowers produced at different times. Fruit set was positively related to visitation rate but declined with later dates of flower production in both years. Total fruit production per plant was positively influenced by flowering duration, which declined with later flowering onset, as did fruit mass. Individual flowering schedules were consistent between years, suggesting that plants that begin flowering late have lower reproductive output each year. These patterns suggest that if pointleaf manzanita flowering continues to shift later, its flowering season may continue to become shorter, compressing floral resource availability for pollinators and leading to reduced reproductive output. These results reveal the negative effects of delayed phenology on reproductive output in a long-lived plant. They highlight the value of using natural variation in flowering time, in combination with long-term data, to anticipate the consequences of phenological shifts.",
author = "Rafferty, {Nicole E.} and Bertelsen, {C. David} and Bronstein, {Judith L}",
year = "2015",
doi = "10.1111/oik.02573",
language = "English (US)",
journal = "Oikos",
issn = "0030-1299",
publisher = "Wiley-Blackwell",

}

TY - JOUR

T1 - Later flowering is associated with a compressed flowering season and reduced reproductive output in an early season floral resource

AU - Rafferty, Nicole E.

AU - Bertelsen, C. David

AU - Bronstein, Judith L

PY - 2015

Y1 - 2015

N2 - Climate change-induced shifts in flowering phenology can expose plants to novel biotic and abiotic environments, potentially leading to decreased temporal overlap with pollinators and exposure to conditions that negatively affect fruit and seed set. We explored the relationship between flowering phenology and reproductive output in the common shrub pointleaf manzanita Arctostaphylos pungens in a lower montane habitat in southeastern Arizona, USA. Contrary to the pattern of progressively earlier flowering observed in many species, long-term records show that A. pungens flowering onset is shifting later and the flowering season is being compressed. This species can thus provide unusual insight into the effects of altered phenology. To determine the consequences of among- and within-plant variation in flowering time, we documented individual flowering schedules and followed the fates of flowers on over 50 plants throughout two seasons (2012 and 2013). We also measured visitation rates by potential pollinators in 2012, as well as both fruit mass and seeds per fruit of flowers produced at different times. Fruit set was positively related to visitation rate but declined with later dates of flower production in both years. Total fruit production per plant was positively influenced by flowering duration, which declined with later flowering onset, as did fruit mass. Individual flowering schedules were consistent between years, suggesting that plants that begin flowering late have lower reproductive output each year. These patterns suggest that if pointleaf manzanita flowering continues to shift later, its flowering season may continue to become shorter, compressing floral resource availability for pollinators and leading to reduced reproductive output. These results reveal the negative effects of delayed phenology on reproductive output in a long-lived plant. They highlight the value of using natural variation in flowering time, in combination with long-term data, to anticipate the consequences of phenological shifts.

AB - Climate change-induced shifts in flowering phenology can expose plants to novel biotic and abiotic environments, potentially leading to decreased temporal overlap with pollinators and exposure to conditions that negatively affect fruit and seed set. We explored the relationship between flowering phenology and reproductive output in the common shrub pointleaf manzanita Arctostaphylos pungens in a lower montane habitat in southeastern Arizona, USA. Contrary to the pattern of progressively earlier flowering observed in many species, long-term records show that A. pungens flowering onset is shifting later and the flowering season is being compressed. This species can thus provide unusual insight into the effects of altered phenology. To determine the consequences of among- and within-plant variation in flowering time, we documented individual flowering schedules and followed the fates of flowers on over 50 plants throughout two seasons (2012 and 2013). We also measured visitation rates by potential pollinators in 2012, as well as both fruit mass and seeds per fruit of flowers produced at different times. Fruit set was positively related to visitation rate but declined with later dates of flower production in both years. Total fruit production per plant was positively influenced by flowering duration, which declined with later flowering onset, as did fruit mass. Individual flowering schedules were consistent between years, suggesting that plants that begin flowering late have lower reproductive output each year. These patterns suggest that if pointleaf manzanita flowering continues to shift later, its flowering season may continue to become shorter, compressing floral resource availability for pollinators and leading to reduced reproductive output. These results reveal the negative effects of delayed phenology on reproductive output in a long-lived plant. They highlight the value of using natural variation in flowering time, in combination with long-term data, to anticipate the consequences of phenological shifts.

UR - http://www.scopus.com/inward/record.url?scp=84946433987&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84946433987&partnerID=8YFLogxK

U2 - 10.1111/oik.02573

DO - 10.1111/oik.02573

M3 - Article

AN - SCOPUS:84946433987

JO - Oikos

JF - Oikos

SN - 0030-1299

ER -