Lateral lasing and ASE reduction in VECSELs

Chris Hessenius, Mahmoud Fallahi, Jerome Moloney, Robert Bedford

Research output: Chapter in Book/Report/Conference proceedingConference contribution

7 Scopus citations

Abstract

Vertical external cavity surface emitting lasers (VECSELs) are attractive for many applications due to their high-power, high-brightness outputs. In order to power scale the devices, the pump spot size should be increased. However, the large pump area greatly amplifies the guided spontaneous emission in the epitaxial plane. In order to efficiently power scale the devices, amplified spontaneous emission (ASE) and lateral lasing must be reduced. We begin by first reporting on the temperature dependence of the phenomena. Particularly, since the quantum well gain and bandgap are functions of temperature, ASE and lateral lasing are greatly dependent on the operating temperature as well as the pump power. The easiest method of quantifying the affect of ASE and lateral lasing is by removing the Fabry-Perot cavity formed by the chip edges. We have chosen two different methods: Reducing the Fresnel reflections by patterning the edges of the sample, and depositing a layer of Ge on the edges of the VECSEL chip as the high index of refraction for Ge should reduce the Fresnel reflections and the absorption properties in the NIR regime should also act to prevent feedback into the pump area. Our research shows both of these methods have increased the performance and visibly decreased the amount of lateral lasing seen in the devices.

Original languageEnglish (US)
Title of host publicationVertical External Cavity Surface Emitting Lasers, VECSELs
DOIs
StatePublished - Apr 14 2011
EventVertical External Cavity Surface Emitting Lasers, VECSELs - San Francisco, CA, United States
Duration: Jan 24 2011Jan 25 2011

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume7919
ISSN (Print)0277-786X

Other

OtherVertical External Cavity Surface Emitting Lasers, VECSELs
CountryUnited States
CitySan Francisco, CA
Period1/24/111/25/11

    Fingerprint

Keywords

  • ASE
  • Lateral lasing
  • VECSEL

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Cite this

Hessenius, C., Fallahi, M., Moloney, J., & Bedford, R. (2011). Lateral lasing and ASE reduction in VECSELs. In Vertical External Cavity Surface Emitting Lasers, VECSELs [791909] (Proceedings of SPIE - The International Society for Optical Engineering; Vol. 7919). https://doi.org/10.1117/12.875595