Linear and nonlinear pulse propagation in a multiple-quantum-well photonic crystal

N. C. Nielsen, J. Kuhl, M. Schaarschmidt, J. Förstner, A. Knorr, S. W. Koch, G. Khitrova, H. M. Gibbs, H. Giessen

Research output: Contribution to journalArticlepeer-review

31 Scopus citations

Abstract

We investigate the temporal and spectral properties of subpicosecond pulses transmitted on the heavy-hole exciton transition through a multiple-quantum- well Bragg structure, exhibiting a one-dimensional photonic band gap. At low light intensities, a temporal propagation beating is observed. This beating is strongly dependent on the optical dephasing time T2 which is dominated by the radiative interwell coupling. In an intermediate intensity regime, the Pauli-blocking nonlinearity leads to gradual suppression of the photonic band gap and vanishing of the linear propagation beating. For highly nonlinear excitation, we find signatures of self-induced transmission due to Rabi flopping and adiabatic following of the carrier density. Numerical simulations using the semiconductor Maxwell-Bloch equations are in excellent agreement with the experimental data up to intensities for which higher many-particle correlations become more important and self-phase modulation occurs in the sample substrate.

Original languageEnglish (US)
Article number075306
Pages (from-to)075306-1-075306-10
JournalPhysical Review B - Condensed Matter and Materials Physics
Volume70
Issue number7
DOIs
StatePublished - Aug 2004
Externally publishedYes

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Linear and nonlinear pulse propagation in a multiple-quantum-well photonic crystal'. Together they form a unique fingerprint.

Cite this