Loop of Henle interaction with interstitial nodal spaces in the renal inner medulla

Research output: Contribution to journalArticle

14 Citations (Scopus)

Abstract

Understanding dynamics of NaCl reabsorption from loops of Henle, and cellular and physiological consequences, requires a clear understanding of the structural relationships of loops with other functional elements of the inner medulla (IM). Pathways taken by ascending thin limbs (ATLs) and prebend segments along the corticopapillary axis were evaluated for the outer zone of the IM of the Munich-Wistar rat. Connectivity between these segments and microdomains of interstitium adjacent to collecting ducts (CDs) and abutting ascending vasa recta (interstitial nodal spaces) was assessed by evaluating their physical contacts. For each secondary CD cluster, the number of contacts made between the total population of ATLs and interstitial nodal spaces declines as a function of depth below the outer medulla (OM)-IM boundary at near the same exponential rate that loop number declines. The proportion of each loop that makes contact with nodal spaces is inversely related to loop length. Prebend and postbend equivalent length ATL segments lie in contact with an interstitial nodal space along nearly their entire lengths. The number of contacts made by the total population of prebend or postbend segments exhibits a marked, periodic increase and decrease as a function of depth below the OM-IM boundary; this number of contacts correlates with equivalent periodic changes in prebend number. Simulations of loop distribution indicate that small discontinuities in loop distribution contribute to periodic changes in prebend number. Convergence of IM loop bends within CD clusters likely plays an essential role in NaCl compartmentalization by promoting NaCl reabsorption near interstitial regions lying adjacent to CDs and ascending vasa recta.

Original languageEnglish (US)
JournalAmerican Journal of Physiology - Renal Physiology
Volume295
Issue number6
DOIs
StatePublished - Dec 2008

Fingerprint

Loop of Henle
Extremities
Kidney
Rectum
Population
Wistar Rats

Keywords

  • Computer-assisted reconstruction
  • Concentrating mechanism
  • Countercurrent system
  • NaCl transport
  • Urea transport

ASJC Scopus subject areas

  • Physiology
  • Urology

Cite this

@article{59af593703c648fc8a6106f2a134e8c3,
title = "Loop of Henle interaction with interstitial nodal spaces in the renal inner medulla",
abstract = "Understanding dynamics of NaCl reabsorption from loops of Henle, and cellular and physiological consequences, requires a clear understanding of the structural relationships of loops with other functional elements of the inner medulla (IM). Pathways taken by ascending thin limbs (ATLs) and prebend segments along the corticopapillary axis were evaluated for the outer zone of the IM of the Munich-Wistar rat. Connectivity between these segments and microdomains of interstitium adjacent to collecting ducts (CDs) and abutting ascending vasa recta (interstitial nodal spaces) was assessed by evaluating their physical contacts. For each secondary CD cluster, the number of contacts made between the total population of ATLs and interstitial nodal spaces declines as a function of depth below the outer medulla (OM)-IM boundary at near the same exponential rate that loop number declines. The proportion of each loop that makes contact with nodal spaces is inversely related to loop length. Prebend and postbend equivalent length ATL segments lie in contact with an interstitial nodal space along nearly their entire lengths. The number of contacts made by the total population of prebend or postbend segments exhibits a marked, periodic increase and decrease as a function of depth below the OM-IM boundary; this number of contacts correlates with equivalent periodic changes in prebend number. Simulations of loop distribution indicate that small discontinuities in loop distribution contribute to periodic changes in prebend number. Convergence of IM loop bends within CD clusters likely plays an essential role in NaCl compartmentalization by promoting NaCl reabsorption near interstitial regions lying adjacent to CDs and ascending vasa recta.",
keywords = "Computer-assisted reconstruction, Concentrating mechanism, Countercurrent system, NaCl transport, Urea transport",
author = "Pannabecker, {Thomas L}",
year = "2008",
month = "12",
doi = "10.1152/ajprenal.90483.2008",
language = "English (US)",
volume = "295",
journal = "American Journal of Physiology",
issn = "0363-6143",
publisher = "American Physiological Society",
number = "6",

}

TY - JOUR

T1 - Loop of Henle interaction with interstitial nodal spaces in the renal inner medulla

AU - Pannabecker, Thomas L

PY - 2008/12

Y1 - 2008/12

N2 - Understanding dynamics of NaCl reabsorption from loops of Henle, and cellular and physiological consequences, requires a clear understanding of the structural relationships of loops with other functional elements of the inner medulla (IM). Pathways taken by ascending thin limbs (ATLs) and prebend segments along the corticopapillary axis were evaluated for the outer zone of the IM of the Munich-Wistar rat. Connectivity between these segments and microdomains of interstitium adjacent to collecting ducts (CDs) and abutting ascending vasa recta (interstitial nodal spaces) was assessed by evaluating their physical contacts. For each secondary CD cluster, the number of contacts made between the total population of ATLs and interstitial nodal spaces declines as a function of depth below the outer medulla (OM)-IM boundary at near the same exponential rate that loop number declines. The proportion of each loop that makes contact with nodal spaces is inversely related to loop length. Prebend and postbend equivalent length ATL segments lie in contact with an interstitial nodal space along nearly their entire lengths. The number of contacts made by the total population of prebend or postbend segments exhibits a marked, periodic increase and decrease as a function of depth below the OM-IM boundary; this number of contacts correlates with equivalent periodic changes in prebend number. Simulations of loop distribution indicate that small discontinuities in loop distribution contribute to periodic changes in prebend number. Convergence of IM loop bends within CD clusters likely plays an essential role in NaCl compartmentalization by promoting NaCl reabsorption near interstitial regions lying adjacent to CDs and ascending vasa recta.

AB - Understanding dynamics of NaCl reabsorption from loops of Henle, and cellular and physiological consequences, requires a clear understanding of the structural relationships of loops with other functional elements of the inner medulla (IM). Pathways taken by ascending thin limbs (ATLs) and prebend segments along the corticopapillary axis were evaluated for the outer zone of the IM of the Munich-Wistar rat. Connectivity between these segments and microdomains of interstitium adjacent to collecting ducts (CDs) and abutting ascending vasa recta (interstitial nodal spaces) was assessed by evaluating their physical contacts. For each secondary CD cluster, the number of contacts made between the total population of ATLs and interstitial nodal spaces declines as a function of depth below the outer medulla (OM)-IM boundary at near the same exponential rate that loop number declines. The proportion of each loop that makes contact with nodal spaces is inversely related to loop length. Prebend and postbend equivalent length ATL segments lie in contact with an interstitial nodal space along nearly their entire lengths. The number of contacts made by the total population of prebend or postbend segments exhibits a marked, periodic increase and decrease as a function of depth below the OM-IM boundary; this number of contacts correlates with equivalent periodic changes in prebend number. Simulations of loop distribution indicate that small discontinuities in loop distribution contribute to periodic changes in prebend number. Convergence of IM loop bends within CD clusters likely plays an essential role in NaCl compartmentalization by promoting NaCl reabsorption near interstitial regions lying adjacent to CDs and ascending vasa recta.

KW - Computer-assisted reconstruction

KW - Concentrating mechanism

KW - Countercurrent system

KW - NaCl transport

KW - Urea transport

UR - http://www.scopus.com/inward/record.url?scp=57349174019&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=57349174019&partnerID=8YFLogxK

U2 - 10.1152/ajprenal.90483.2008

DO - 10.1152/ajprenal.90483.2008

M3 - Article

VL - 295

JO - American Journal of Physiology

JF - American Journal of Physiology

SN - 0363-6143

IS - 6

ER -