Machine learning improves classification of preclinical models of pancreatic cancer with chemical exchange saturation transfer MRI

Joshua M. Goldenberg, Julio Cárdenas-Rodríguez, Mark D. Pagel

Research output: Contribution to journalArticle

Abstract

Purpose: We sought to assess whether machine learning-based classification approaches can improve the classification of pancreatic tumor models relative to more simplistic analysis methods, using T 1 relaxation, CEST, and DCE MRI. Methods: The T 1 relaxation time constants, % CEST at five saturation frequencies, and vascular permeability constants from DCE MRI were measured from Hs 766 T, MIA PaCa-2, and SU.86.86 pancreatic tumor models. We used each of these measurements as predictors for machine learning classifier algorithms. We also used principal component analysis to reduce the dimensionality of entire CEST spectra and DCE signal evolutions, which were then analyzed using classification methods. Results: The T 1 relaxation time constants, % CEST amplitudes at specific saturation frequencies, and the relative K trans and k ep values from DCE MRI could not classify all three tumor types. However, the area under the curve from DCE signal evolutions could classify each tumor type. Principal component analysis was used to analyze the entire CEST spectrum and DCE signal evolutions, which predicted the correct tumor model with 87.5% and 85.1% accuracy, respectively. Conclusions: Machine learning applied to the entire CEST spectrum improved the classification of the three tumor models, relative to classifications that used % CEST values at single saturation frequencies. A similar improvement was not attained with machine learning applied to T 1 relaxation times or DCE signal evolutions, relative to more simplistic analysis methods.

Original languageEnglish (US)
Pages (from-to)594-601
Number of pages8
JournalMagnetic Resonance in Medicine
Volume81
Issue number1
DOIs
StatePublished - Jan 2019

Keywords

  • CEST
  • DCE. machine learning
  • MRI
  • MRI
  • PCA
  • pancreatic cancer imaging

ASJC Scopus subject areas

  • Radiology Nuclear Medicine and imaging

Fingerprint Dive into the research topics of 'Machine learning improves classification of preclinical models of pancreatic cancer with chemical exchange saturation transfer MRI'. Together they form a unique fingerprint.

  • Cite this