MAGPI

A framework for maximum likelihood MR phase imaging using multiple receive coils

Joseph Dagher, Kambiz Nael

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

Purpose: Combining MR phase images from multiple receive coils is a challenging problem, complicated by ambiguities introduced by phase wrapping, noise, and the unknown phase-offset between the coils. Various techniques have been proposed to mitigate the effect of these ambiguities but most of the existing methods require additional reference scans and/or use ad hoc post-processing techniques that do not guarantee any optimality. Theory and Methods: Here, the phase estimation problem is formulated rigorously using a maximum-likelihood (ML) approach. The proposed framework jointly designs the acquisition-processing chain: the optimized pulse sequence is a single multiecho gradient echo scan and the corresponding postprocessing algorithm is a voxel-per-voxel ML estimator of the underlying tissue phase. Results: Our proposed framework (Maximum AmbiGuity distance for Phase Imaging, MAGPI) achieves substantial improvements in the phase estimate, resulting in phase signal-to-noise ratio (SNR) gains by up to an order of magnitude compared to existing methods. Conclusion: The advantages of MAGPI are: (1) ML-optimal combination of phase data from multiple receive coils, without a reference scan; (2) voxel-per-voxel ML-optimal estimation of the underlying tissue phase, without the need for phase unwrapping or image smoothing; and (3) robust dynamic estimation of channel-dependent phase-offsets.

Original languageEnglish (US)
JournalMagnetic Resonance in Medicine
DOIs
StateAccepted/In press - 2015

Fingerprint

Post and Core Technique
Signal-To-Noise Ratio
Noise

Keywords

  • Coil array
  • Frequency offset
  • Maximum likelihood
  • MR phase
  • Phase offset

ASJC Scopus subject areas

  • Radiology Nuclear Medicine and imaging

Cite this

@article{15d077643e1e4f97ae9059c279e7c270,
title = "MAGPI: A framework for maximum likelihood MR phase imaging using multiple receive coils",
abstract = "Purpose: Combining MR phase images from multiple receive coils is a challenging problem, complicated by ambiguities introduced by phase wrapping, noise, and the unknown phase-offset between the coils. Various techniques have been proposed to mitigate the effect of these ambiguities but most of the existing methods require additional reference scans and/or use ad hoc post-processing techniques that do not guarantee any optimality. Theory and Methods: Here, the phase estimation problem is formulated rigorously using a maximum-likelihood (ML) approach. The proposed framework jointly designs the acquisition-processing chain: the optimized pulse sequence is a single multiecho gradient echo scan and the corresponding postprocessing algorithm is a voxel-per-voxel ML estimator of the underlying tissue phase. Results: Our proposed framework (Maximum AmbiGuity distance for Phase Imaging, MAGPI) achieves substantial improvements in the phase estimate, resulting in phase signal-to-noise ratio (SNR) gains by up to an order of magnitude compared to existing methods. Conclusion: The advantages of MAGPI are: (1) ML-optimal combination of phase data from multiple receive coils, without a reference scan; (2) voxel-per-voxel ML-optimal estimation of the underlying tissue phase, without the need for phase unwrapping or image smoothing; and (3) robust dynamic estimation of channel-dependent phase-offsets.",
keywords = "Coil array, Frequency offset, Maximum likelihood, MR phase, Phase offset",
author = "Joseph Dagher and Kambiz Nael",
year = "2015",
doi = "10.1002/mrm.25756",
language = "English (US)",
journal = "Magnetic Resonance in Medicine",
issn = "0740-3194",
publisher = "John Wiley and Sons Inc.",

}

TY - JOUR

T1 - MAGPI

T2 - A framework for maximum likelihood MR phase imaging using multiple receive coils

AU - Dagher, Joseph

AU - Nael, Kambiz

PY - 2015

Y1 - 2015

N2 - Purpose: Combining MR phase images from multiple receive coils is a challenging problem, complicated by ambiguities introduced by phase wrapping, noise, and the unknown phase-offset between the coils. Various techniques have been proposed to mitigate the effect of these ambiguities but most of the existing methods require additional reference scans and/or use ad hoc post-processing techniques that do not guarantee any optimality. Theory and Methods: Here, the phase estimation problem is formulated rigorously using a maximum-likelihood (ML) approach. The proposed framework jointly designs the acquisition-processing chain: the optimized pulse sequence is a single multiecho gradient echo scan and the corresponding postprocessing algorithm is a voxel-per-voxel ML estimator of the underlying tissue phase. Results: Our proposed framework (Maximum AmbiGuity distance for Phase Imaging, MAGPI) achieves substantial improvements in the phase estimate, resulting in phase signal-to-noise ratio (SNR) gains by up to an order of magnitude compared to existing methods. Conclusion: The advantages of MAGPI are: (1) ML-optimal combination of phase data from multiple receive coils, without a reference scan; (2) voxel-per-voxel ML-optimal estimation of the underlying tissue phase, without the need for phase unwrapping or image smoothing; and (3) robust dynamic estimation of channel-dependent phase-offsets.

AB - Purpose: Combining MR phase images from multiple receive coils is a challenging problem, complicated by ambiguities introduced by phase wrapping, noise, and the unknown phase-offset between the coils. Various techniques have been proposed to mitigate the effect of these ambiguities but most of the existing methods require additional reference scans and/or use ad hoc post-processing techniques that do not guarantee any optimality. Theory and Methods: Here, the phase estimation problem is formulated rigorously using a maximum-likelihood (ML) approach. The proposed framework jointly designs the acquisition-processing chain: the optimized pulse sequence is a single multiecho gradient echo scan and the corresponding postprocessing algorithm is a voxel-per-voxel ML estimator of the underlying tissue phase. Results: Our proposed framework (Maximum AmbiGuity distance for Phase Imaging, MAGPI) achieves substantial improvements in the phase estimate, resulting in phase signal-to-noise ratio (SNR) gains by up to an order of magnitude compared to existing methods. Conclusion: The advantages of MAGPI are: (1) ML-optimal combination of phase data from multiple receive coils, without a reference scan; (2) voxel-per-voxel ML-optimal estimation of the underlying tissue phase, without the need for phase unwrapping or image smoothing; and (3) robust dynamic estimation of channel-dependent phase-offsets.

KW - Coil array

KW - Frequency offset

KW - Maximum likelihood

KW - MR phase

KW - Phase offset

UR - http://www.scopus.com/inward/record.url?scp=84928974935&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84928974935&partnerID=8YFLogxK

U2 - 10.1002/mrm.25756

DO - 10.1002/mrm.25756

M3 - Article

JO - Magnetic Resonance in Medicine

JF - Magnetic Resonance in Medicine

SN - 0740-3194

ER -