### Abstract

The subject of this paper are algorithms for measuring the similarity of patterns of line segments in the plane, a standard problem in, e.g. computer vision, geographic information systems, etc. More precisely, we will define feasible distance measures that reflect how close a given pattern H is to some part of a larger pattern G. These distance measures are generalizations of the well known Fréchet distance for curves. We will first give an efficient algorithm for the case that H is a polygonal curve and G is a geometric graph. Then, slightly relaxing the definition of distance measure we will give an algorithm for the general case where both, H and G, are geometric graphs.

Original language | English (US) |
---|---|

Title of host publication | Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms |

Editors | J Schewel |

Pages | 589-598 |

Number of pages | 10 |

Publication status | Published - 2003 |

Event | Configuralble Computing: Technology and Applications - Boston, MA, United States Duration: Nov 2 1998 → Nov 3 1998 |

### Other

Other | Configuralble Computing: Technology and Applications |
---|---|

Country | United States |

City | Boston, MA |

Period | 11/2/98 → 11/3/98 |

### Fingerprint

### ASJC Scopus subject areas

- Chemical Health and Safety
- Software
- Safety, Risk, Reliability and Quality
- Discrete Mathematics and Combinatorics

### Cite this

*Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms*(pp. 589-598)