Matrix-isolation FT-IR studies and ab-initio calculations of hydrogen-bonded complexes of molecules modeling cytosine or isocytosine tautomers. 3. Complexes of 4-hydroxypyridine and 3-hydroxypyridine with H2O in Ar matrices

Fritz Buyl, Johan Smets, Guido Maes, Ludwik Adamowicz

Research output: Contribution to journalArticle

41 Citations (Scopus)

Abstract

The hydrogen-bond interaction of 4-hydroxypyridine and 3-hydroxypyridine with H2O is investigated with the use of a combined experimental matrix-isolation FT-IR and theoretical ab-initio method. Both of these isomeric compounds occur in the hydroxy form in low-temperature Ar matrices, in accordance with the predicted stability difference from the oxo form of 22 and 55 kJ/mol for 4-hydroxypyridine and 3-hydroxypyridine, respectively. The most stable H-bonded complex of the hydroxy tautomers of both compounds with water is the O-H⋯OH2 structure, and the stability differences with the nearest lying isomeric N⋯HO-H structures are 6.74 and 6.41 kJ/mol, respectively. Both complexes are identified with the use of the predicted frequency perturbations. The correlation between the predicted interaction energies and the frequency shifts of the modes of bonded water and the scaling factors of these modes is analyzed for the series pyrimidine, pyridine, 3-hydroxypyridine, 4-hydroxypyridine, and 4-aminopyridine. The relative basicity and acidity of 4-hydroxypyridine and 3-hydroxypyridine are estimated from this analysis and discussed.

Original languageEnglish (US)
Pages (from-to)14967-14979
Number of pages13
JournalJournal of Physical Chemistry
Volume99
Issue number41
StatePublished - 1995

Fingerprint

Cytosine
tautomers
Hydrogen
isolation
Molecules
pyrimidines
hydrogen
Alkalinity
matrices
Acidity
acidity
Pyridine
water
frequency shift
Water
molecules
pyridines
Hydrogen bonds
interactions
hydrogen bonds

ASJC Scopus subject areas

  • Physical and Theoretical Chemistry

Cite this

@article{8707198fb26f418db645d0f9af5fbc66,
title = "Matrix-isolation FT-IR studies and ab-initio calculations of hydrogen-bonded complexes of molecules modeling cytosine or isocytosine tautomers. 3. Complexes of 4-hydroxypyridine and 3-hydroxypyridine with H2O in Ar matrices",
abstract = "The hydrogen-bond interaction of 4-hydroxypyridine and 3-hydroxypyridine with H2O is investigated with the use of a combined experimental matrix-isolation FT-IR and theoretical ab-initio method. Both of these isomeric compounds occur in the hydroxy form in low-temperature Ar matrices, in accordance with the predicted stability difference from the oxo form of 22 and 55 kJ/mol for 4-hydroxypyridine and 3-hydroxypyridine, respectively. The most stable H-bonded complex of the hydroxy tautomers of both compounds with water is the O-H⋯OH2 structure, and the stability differences with the nearest lying isomeric N⋯HO-H structures are 6.74 and 6.41 kJ/mol, respectively. Both complexes are identified with the use of the predicted frequency perturbations. The correlation between the predicted interaction energies and the frequency shifts of the modes of bonded water and the scaling factors of these modes is analyzed for the series pyrimidine, pyridine, 3-hydroxypyridine, 4-hydroxypyridine, and 4-aminopyridine. The relative basicity and acidity of 4-hydroxypyridine and 3-hydroxypyridine are estimated from this analysis and discussed.",
author = "Fritz Buyl and Johan Smets and Guido Maes and Ludwik Adamowicz",
year = "1995",
language = "English (US)",
volume = "99",
pages = "14967--14979",
journal = "Journal of Physical Chemistry",
issn = "0022-3654",
publisher = "American Chemical Society",
number = "41",

}

TY - JOUR

T1 - Matrix-isolation FT-IR studies and ab-initio calculations of hydrogen-bonded complexes of molecules modeling cytosine or isocytosine tautomers. 3. Complexes of 4-hydroxypyridine and 3-hydroxypyridine with H2O in Ar matrices

AU - Buyl, Fritz

AU - Smets, Johan

AU - Maes, Guido

AU - Adamowicz, Ludwik

PY - 1995

Y1 - 1995

N2 - The hydrogen-bond interaction of 4-hydroxypyridine and 3-hydroxypyridine with H2O is investigated with the use of a combined experimental matrix-isolation FT-IR and theoretical ab-initio method. Both of these isomeric compounds occur in the hydroxy form in low-temperature Ar matrices, in accordance with the predicted stability difference from the oxo form of 22 and 55 kJ/mol for 4-hydroxypyridine and 3-hydroxypyridine, respectively. The most stable H-bonded complex of the hydroxy tautomers of both compounds with water is the O-H⋯OH2 structure, and the stability differences with the nearest lying isomeric N⋯HO-H structures are 6.74 and 6.41 kJ/mol, respectively. Both complexes are identified with the use of the predicted frequency perturbations. The correlation between the predicted interaction energies and the frequency shifts of the modes of bonded water and the scaling factors of these modes is analyzed for the series pyrimidine, pyridine, 3-hydroxypyridine, 4-hydroxypyridine, and 4-aminopyridine. The relative basicity and acidity of 4-hydroxypyridine and 3-hydroxypyridine are estimated from this analysis and discussed.

AB - The hydrogen-bond interaction of 4-hydroxypyridine and 3-hydroxypyridine with H2O is investigated with the use of a combined experimental matrix-isolation FT-IR and theoretical ab-initio method. Both of these isomeric compounds occur in the hydroxy form in low-temperature Ar matrices, in accordance with the predicted stability difference from the oxo form of 22 and 55 kJ/mol for 4-hydroxypyridine and 3-hydroxypyridine, respectively. The most stable H-bonded complex of the hydroxy tautomers of both compounds with water is the O-H⋯OH2 structure, and the stability differences with the nearest lying isomeric N⋯HO-H structures are 6.74 and 6.41 kJ/mol, respectively. Both complexes are identified with the use of the predicted frequency perturbations. The correlation between the predicted interaction energies and the frequency shifts of the modes of bonded water and the scaling factors of these modes is analyzed for the series pyrimidine, pyridine, 3-hydroxypyridine, 4-hydroxypyridine, and 4-aminopyridine. The relative basicity and acidity of 4-hydroxypyridine and 3-hydroxypyridine are estimated from this analysis and discussed.

UR - http://www.scopus.com/inward/record.url?scp=33751156709&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33751156709&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:33751156709

VL - 99

SP - 14967

EP - 14979

JO - Journal of Physical Chemistry

JF - Journal of Physical Chemistry

SN - 0022-3654

IS - 41

ER -