Maximum-likelihood surface reconstruction with Viterbi algorithm for volume holographic profilometry

Wenyang Sun, George Barbastathis, Mark A Neifeld

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We use maximum-likelihood (ML) estimation to clean up the depth-variant image blur in volume holographic profilometry and to reconstruct the surface with high accuracy. Viterbi algorithm is used in ML estimation to reduce computational complexity and bit error rate.

Original languageEnglish (US)
Title of host publicationOptics InfoBase Conference Papers
PublisherOptical Society of America
ISBN (Print)1557528136, 9781557528131
StatePublished - 2006
EventConference on Lasers and Electro-Optics, CLEO 2006 - Long Beach, CA, United States
Duration: May 21 2006May 21 2006

Other

OtherConference on Lasers and Electro-Optics, CLEO 2006
CountryUnited States
CityLong Beach, CA
Period5/21/065/21/06

Fingerprint

Viterbi algorithm
Profilometry
Surface reconstruction
Maximum likelihood estimation
Maximum likelihood
bit error rate
Bit error rate
Computational complexity

ASJC Scopus subject areas

  • Instrumentation
  • Atomic and Molecular Physics, and Optics

Cite this

Sun, W., Barbastathis, G., & Neifeld, M. A. (2006). Maximum-likelihood surface reconstruction with Viterbi algorithm for volume holographic profilometry. In Optics InfoBase Conference Papers Optical Society of America.

Maximum-likelihood surface reconstruction with Viterbi algorithm for volume holographic profilometry. / Sun, Wenyang; Barbastathis, George; Neifeld, Mark A.

Optics InfoBase Conference Papers. Optical Society of America, 2006.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Sun, W, Barbastathis, G & Neifeld, MA 2006, Maximum-likelihood surface reconstruction with Viterbi algorithm for volume holographic profilometry. in Optics InfoBase Conference Papers. Optical Society of America, Conference on Lasers and Electro-Optics, CLEO 2006, Long Beach, CA, United States, 5/21/06.
Sun W, Barbastathis G, Neifeld MA. Maximum-likelihood surface reconstruction with Viterbi algorithm for volume holographic profilometry. In Optics InfoBase Conference Papers. Optical Society of America. 2006
Sun, Wenyang ; Barbastathis, George ; Neifeld, Mark A. / Maximum-likelihood surface reconstruction with Viterbi algorithm for volume holographic profilometry. Optics InfoBase Conference Papers. Optical Society of America, 2006.
@inproceedings{c93c2cbbf15c4bfab91182220a5917df,
title = "Maximum-likelihood surface reconstruction with Viterbi algorithm for volume holographic profilometry",
abstract = "We use maximum-likelihood (ML) estimation to clean up the depth-variant image blur in volume holographic profilometry and to reconstruct the surface with high accuracy. Viterbi algorithm is used in ML estimation to reduce computational complexity and bit error rate.",
author = "Wenyang Sun and George Barbastathis and Neifeld, {Mark A}",
year = "2006",
language = "English (US)",
isbn = "1557528136",
booktitle = "Optics InfoBase Conference Papers",
publisher = "Optical Society of America",

}

TY - GEN

T1 - Maximum-likelihood surface reconstruction with Viterbi algorithm for volume holographic profilometry

AU - Sun, Wenyang

AU - Barbastathis, George

AU - Neifeld, Mark A

PY - 2006

Y1 - 2006

N2 - We use maximum-likelihood (ML) estimation to clean up the depth-variant image blur in volume holographic profilometry and to reconstruct the surface with high accuracy. Viterbi algorithm is used in ML estimation to reduce computational complexity and bit error rate.

AB - We use maximum-likelihood (ML) estimation to clean up the depth-variant image blur in volume holographic profilometry and to reconstruct the surface with high accuracy. Viterbi algorithm is used in ML estimation to reduce computational complexity and bit error rate.

UR - http://www.scopus.com/inward/record.url?scp=84899045290&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84899045290&partnerID=8YFLogxK

M3 - Conference contribution

SN - 1557528136

SN - 9781557528131

BT - Optics InfoBase Conference Papers

PB - Optical Society of America

ER -