MBE growth and magneto-optic properties of magnetic multilayers

Charles M. Falco, Brad N. Engel

Research output: Contribution to journalArticlepeer-review

7 Scopus citations


Recent interest in the magnetic and magneto-optic properties of transition metal/transition metal multilayers has been stimulated by the discovery of perpendicular magnetism in particular systems such as Co/Pd and Co/Pt. Due to their favorable magneto-optic wavelength dependence and enhanced corrosion resistance, these materials show promise as future data storage media. However, partially due to the large variety of thin-film deposition methods and growth conditions, it has been difficult to obtain a clear understanding of the mechanisms of magnetic anisotropy in these systems. In order to create controlled and well characterized model systems, we have grown a series of epitaxial Co/Pd superlattices oriented along the three high-symmetry crystal directions [001], [110], and [111] on single-crystal GaAs substrates by molecular beam epitaxy [MBE]. Simultaneously, we have deposited polycrystalline Co/Pd multilayers on Si substrates mounted alongside the GaAs for direct comparisons of epitaxial and non-epitaxial films produced under identical conditions. The structural properties of these multilayers were determined by low-and reflection high-energy electron diffraction (LEED and RHEED), low- and high-angle X-ray diffraction, and scanning tunneling microscopy (STM). The dependence of the uniaxial magnetic anisotropy energy on the Co thickness in these superlattices showed significant systematic differences for each of the three crystal orientations. A review of our work on the structural influences responsible for these differences is presented.

Original languageEnglish (US)
Pages (from-to)790-797
Number of pages8
JournalApplied Surface Science
Issue numberC
StatePublished - 1992

ASJC Scopus subject areas

  • Chemistry(all)
  • Condensed Matter Physics
  • Physics and Astronomy(all)
  • Surfaces and Interfaces
  • Surfaces, Coatings and Films


Dive into the research topics of 'MBE growth and magneto-optic properties of magnetic multilayers'. Together they form a unique fingerprint.

Cite this