Measurement of material elastic constants of trabecular bone

A micromechanical analytic study using a 1 GHz acoustic microscope

C. S. Jørgensen, Tribikram Kundu

Research output: Contribution to journalArticle

33 Citations (Scopus)

Abstract

The propagation speed (C) of surface acoustic waves (SAW), e.g. Rayleigh (R-waves) and longitudinal lateral waves (L-waves), the latter being the surface manifestation of the longitudinal waves, strongly reflect mechanical properties of materials. In view of an increasing interest in ultrasonic methodology in the field of bone biomechanics, we tested the hypothesis that both R- and L-waves can be excited in trabecular bone using an acoustic microscope at 1 GHz and that their speeds (CR and CL) can be extracted from V(z)-curves, i.e. plots of lens output voltage as a function of the lens focal point position with respect to the specimen surface. In accordance with V(z)-curves theoretically synthesized on the basis of incident field theory, experimental curves for canine femoral trabecular bone showed evidence of both R- and L-waves in almost all regions of recording. The measured CR ranged between 1.93 and 2.07 km/s (mean ± SD.: 2.00 ± 0.06 km/s) and the CL ranged between 2.33 and 4.33 km/s (3.37 ± 0.61 km/s). Knowledge of both speeds allowed computation of a number of material constants by means of simple theory of elasticity and assumptions of the material density. We found values of Poisson ratio (v) ranging from 0.14 to 0.32 (0.23 ± 0.07), Young's modulus (E) from 15 to 22.8 GPa (19.9 ± 2.5 GPa) and the shear modulus (G) from 7.6 to 8.9 GPa (8.4 ± 0.5 GPa). Anisotropy in the trabecular bone material was clearly detected at the micrometer level. In conclusion, the V(z)-curve method was successfully used to determine the distribution of material elastic constants of trabecular bone with micrometer resolution.

Original languageEnglish (US)
Pages (from-to)151-158
Number of pages8
JournalJournal of Orthopaedic Research
Volume20
Issue number1
DOIs
StatePublished - 2002

Fingerprint

Acoustics
Lenses
Elastic Modulus
Anisotropy
Elasticity
Thigh
Biomechanical Phenomena
Ultrasonics
Canidae
Bone and Bones
Cancellous Bone

ASJC Scopus subject areas

  • Orthopedics and Sports Medicine

Cite this

@article{1a3be1bc384145abab404c75c868f554,
title = "Measurement of material elastic constants of trabecular bone: A micromechanical analytic study using a 1 GHz acoustic microscope",
abstract = "The propagation speed (C) of surface acoustic waves (SAW), e.g. Rayleigh (R-waves) and longitudinal lateral waves (L-waves), the latter being the surface manifestation of the longitudinal waves, strongly reflect mechanical properties of materials. In view of an increasing interest in ultrasonic methodology in the field of bone biomechanics, we tested the hypothesis that both R- and L-waves can be excited in trabecular bone using an acoustic microscope at 1 GHz and that their speeds (CR and CL) can be extracted from V(z)-curves, i.e. plots of lens output voltage as a function of the lens focal point position with respect to the specimen surface. In accordance with V(z)-curves theoretically synthesized on the basis of incident field theory, experimental curves for canine femoral trabecular bone showed evidence of both R- and L-waves in almost all regions of recording. The measured CR ranged between 1.93 and 2.07 km/s (mean ± SD.: 2.00 ± 0.06 km/s) and the CL ranged between 2.33 and 4.33 km/s (3.37 ± 0.61 km/s). Knowledge of both speeds allowed computation of a number of material constants by means of simple theory of elasticity and assumptions of the material density. We found values of Poisson ratio (v) ranging from 0.14 to 0.32 (0.23 ± 0.07), Young's modulus (E) from 15 to 22.8 GPa (19.9 ± 2.5 GPa) and the shear modulus (G) from 7.6 to 8.9 GPa (8.4 ± 0.5 GPa). Anisotropy in the trabecular bone material was clearly detected at the micrometer level. In conclusion, the V(z)-curve method was successfully used to determine the distribution of material elastic constants of trabecular bone with micrometer resolution.",
author = "J{\o}rgensen, {C. S.} and Tribikram Kundu",
year = "2002",
doi = "10.1016/S0736-0266(01)00061-4",
language = "English (US)",
volume = "20",
pages = "151--158",
journal = "Journal of Orthopaedic Research",
issn = "0736-0266",
publisher = "John Wiley and Sons Inc.",
number = "1",

}

TY - JOUR

T1 - Measurement of material elastic constants of trabecular bone

T2 - A micromechanical analytic study using a 1 GHz acoustic microscope

AU - Jørgensen, C. S.

AU - Kundu, Tribikram

PY - 2002

Y1 - 2002

N2 - The propagation speed (C) of surface acoustic waves (SAW), e.g. Rayleigh (R-waves) and longitudinal lateral waves (L-waves), the latter being the surface manifestation of the longitudinal waves, strongly reflect mechanical properties of materials. In view of an increasing interest in ultrasonic methodology in the field of bone biomechanics, we tested the hypothesis that both R- and L-waves can be excited in trabecular bone using an acoustic microscope at 1 GHz and that their speeds (CR and CL) can be extracted from V(z)-curves, i.e. plots of lens output voltage as a function of the lens focal point position with respect to the specimen surface. In accordance with V(z)-curves theoretically synthesized on the basis of incident field theory, experimental curves for canine femoral trabecular bone showed evidence of both R- and L-waves in almost all regions of recording. The measured CR ranged between 1.93 and 2.07 km/s (mean ± SD.: 2.00 ± 0.06 km/s) and the CL ranged between 2.33 and 4.33 km/s (3.37 ± 0.61 km/s). Knowledge of both speeds allowed computation of a number of material constants by means of simple theory of elasticity and assumptions of the material density. We found values of Poisson ratio (v) ranging from 0.14 to 0.32 (0.23 ± 0.07), Young's modulus (E) from 15 to 22.8 GPa (19.9 ± 2.5 GPa) and the shear modulus (G) from 7.6 to 8.9 GPa (8.4 ± 0.5 GPa). Anisotropy in the trabecular bone material was clearly detected at the micrometer level. In conclusion, the V(z)-curve method was successfully used to determine the distribution of material elastic constants of trabecular bone with micrometer resolution.

AB - The propagation speed (C) of surface acoustic waves (SAW), e.g. Rayleigh (R-waves) and longitudinal lateral waves (L-waves), the latter being the surface manifestation of the longitudinal waves, strongly reflect mechanical properties of materials. In view of an increasing interest in ultrasonic methodology in the field of bone biomechanics, we tested the hypothesis that both R- and L-waves can be excited in trabecular bone using an acoustic microscope at 1 GHz and that their speeds (CR and CL) can be extracted from V(z)-curves, i.e. plots of lens output voltage as a function of the lens focal point position with respect to the specimen surface. In accordance with V(z)-curves theoretically synthesized on the basis of incident field theory, experimental curves for canine femoral trabecular bone showed evidence of both R- and L-waves in almost all regions of recording. The measured CR ranged between 1.93 and 2.07 km/s (mean ± SD.: 2.00 ± 0.06 km/s) and the CL ranged between 2.33 and 4.33 km/s (3.37 ± 0.61 km/s). Knowledge of both speeds allowed computation of a number of material constants by means of simple theory of elasticity and assumptions of the material density. We found values of Poisson ratio (v) ranging from 0.14 to 0.32 (0.23 ± 0.07), Young's modulus (E) from 15 to 22.8 GPa (19.9 ± 2.5 GPa) and the shear modulus (G) from 7.6 to 8.9 GPa (8.4 ± 0.5 GPa). Anisotropy in the trabecular bone material was clearly detected at the micrometer level. In conclusion, the V(z)-curve method was successfully used to determine the distribution of material elastic constants of trabecular bone with micrometer resolution.

UR - http://www.scopus.com/inward/record.url?scp=0036149040&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0036149040&partnerID=8YFLogxK

U2 - 10.1016/S0736-0266(01)00061-4

DO - 10.1016/S0736-0266(01)00061-4

M3 - Article

VL - 20

SP - 151

EP - 158

JO - Journal of Orthopaedic Research

JF - Journal of Orthopaedic Research

SN - 0736-0266

IS - 1

ER -