TY - JOUR
T1 - Measurement of the nuclear symmetry energy parameters from gravitational wave events
AU - Raithel, Carolyn A.
AU - Özel, Feryal
N1 - Publisher Copyright:
Copyright © 2019, The Authors. All rights reserved.
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2019/7/31
Y1 - 2019/7/31
N2 - The nuclear symmetry energy plays a role in determining both the nuclear properties of terrestrial matter as well as the astrophysical properties of neutron stars. The first measurement of the neutron star tidal deformability, from gravitational wave event GW170817, provides a new way of probing the symmetry energy. In this work, we report on new constraints on the symmetry energy from GW170817. We focus in particular on the low-order coefficients: namely, the value of the symmetry energy at the nuclear saturation density, S0, and the slope of the symmetry energy, L0. We find that the gravitational wave data are relatively insensitive to S0, but that they depend strongly on L0 and point to lower values of L0 than have previously been reported, with a peak likelihood near L0 ∼ 20 MeV. Finally, we use the inferred posteriors on L0 to derive new analytic constraints on higher-order nuclear terms.
AB - The nuclear symmetry energy plays a role in determining both the nuclear properties of terrestrial matter as well as the astrophysical properties of neutron stars. The first measurement of the neutron star tidal deformability, from gravitational wave event GW170817, provides a new way of probing the symmetry energy. In this work, we report on new constraints on the symmetry energy from GW170817. We focus in particular on the low-order coefficients: namely, the value of the symmetry energy at the nuclear saturation density, S0, and the slope of the symmetry energy, L0. We find that the gravitational wave data are relatively insensitive to S0, but that they depend strongly on L0 and point to lower values of L0 than have previously been reported, with a peak likelihood near L0 ∼ 20 MeV. Finally, we use the inferred posteriors on L0 to derive new analytic constraints on higher-order nuclear terms.
UR - http://www.scopus.com/inward/record.url?scp=85093627876&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85093627876&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:85093627876
JO - Nuclear Physics A
JF - Nuclear Physics A
SN - 0375-9474
ER -