Measurement of the photon identification efficiencies with the ATLAS detector using LHC Run 2 data collected in 2015 and 2016

Atlas Collaboration

Research output: Contribution to journalArticle

6 Citations (Scopus)

Abstract

The efficiency of the photon identification criteria in the ATLAS detector is measured using 36.1fb1 to 36.7fb1 of pp collision data at s=13 TeV collected in 2015 and 2016. The efficiencies are measured separately for converted and unconverted isolated photons, in four different pseudorapidity regions, for transverse momenta between 10 GeV and 1.5 TeV. The results from the combination of three data-driven techniques are compared with the predictions from simulation after correcting the variables describing the shape of electromagnetic showers in simulation for the average differences observed relative to data. Data-to-simulation efficiency ratios are determined to account for the small residual efficiency differences. These factors are measured with uncertainties between 0.5% and 5% depending on the photon transverse momentum and pseudorapidity. The impact of the isolation criteria on the photon identification efficiency, and that of additional soft pp interactions, are also discussed. The probability of reconstructing an electron as a photon candidate is measured in data, and compared with the predictions from simulation. The efficiency of the reconstruction of photon conversions is measured using a sample of photon candidates from Z→ μμγ events, exploiting the properties of the ratio of the energies deposited in the first and second longitudinal layers of the ATLAS electromagnetic calorimeter.

Original languageEnglish (US)
Article number205
JournalEuropean Physical Journal C
Volume79
Issue number3
DOIs
StatePublished - Mar 1 2019

Fingerprint

Photons
Detectors
detectors
photons
transverse momentum
Momentum
simulation
electromagnetism
predictions
showers
Calorimeters
calorimeters
isolation
collisions
Electrons
electrons
interactions
energy

ASJC Scopus subject areas

  • Engineering (miscellaneous)
  • Physics and Astronomy (miscellaneous)

Cite this

Measurement of the photon identification efficiencies with the ATLAS detector using LHC Run 2 data collected in 2015 and 2016. / Atlas Collaboration.

In: European Physical Journal C, Vol. 79, No. 3, 205, 01.03.2019.

Research output: Contribution to journalArticle

@article{0ec8136278ab4c9e9214273ddb3f9bcf,
title = "Measurement of the photon identification efficiencies with the ATLAS detector using LHC Run 2 data collected in 2015 and 2016",
abstract = "The efficiency of the photon identification criteria in the ATLAS detector is measured using 36.1fb1 to 36.7fb1 of pp collision data at s=13 TeV collected in 2015 and 2016. The efficiencies are measured separately for converted and unconverted isolated photons, in four different pseudorapidity regions, for transverse momenta between 10 GeV and 1.5 TeV. The results from the combination of three data-driven techniques are compared with the predictions from simulation after correcting the variables describing the shape of electromagnetic showers in simulation for the average differences observed relative to data. Data-to-simulation efficiency ratios are determined to account for the small residual efficiency differences. These factors are measured with uncertainties between 0.5{\%} and 5{\%} depending on the photon transverse momentum and pseudorapidity. The impact of the isolation criteria on the photon identification efficiency, and that of additional soft pp interactions, are also discussed. The probability of reconstructing an electron as a photon candidate is measured in data, and compared with the predictions from simulation. The efficiency of the reconstruction of photon conversions is measured using a sample of photon candidates from Z→ μμγ events, exploiting the properties of the ratio of the energies deposited in the first and second longitudinal layers of the ATLAS electromagnetic calorimeter.",
author = "{Atlas Collaboration} and M. Aaboud and G. Aad and B. Abbott and O. Abdinov and B. Abeloos and Abhayasinghe, {D. K.} and Abidi, {S. H.} and AbouZeid, {O. S.} and Abraham, {N. L.} and H. Abramowicz and H. Abreu and Y. Abulaiti and Acharya, {B. S.} and S. Adachi and L. Adam and L. Adamczyk and J. Adelman and M. Adersberger and A. Adiguzel and T. Adye and Affolder, {A. A.} and Y. Afik and C. Agheorghiesei and Aguilar-Saavedra, {J. A.} and F. Ahmadov and G. Aielli and S. Akatsuka and {\AA}kesson, {T. P.A.} and E. Akilli and Akimov, {A. V.} and Alberghi, {G. L.} and J. Albert and P. Albicocco and Alconada Verzini, {M. J.} and S. Alderweireldt and M. Aleksa and Aleksandrov, {I. N.} and C. Alexa and T. Alexopoulos and M. Alhroob and B. Ali and G. Alimonti and J. Alison and Alkire, {S. P.} and C. Allaire and Allbrooke, {B. M.M.} and Cheu, {Elliott C} and Johns, {Kenneth A} and Rutherfoord, {John P} and Varnes, {Erich W}",
year = "2019",
month = "3",
day = "1",
doi = "10.1140/epjc/s10052-019-6650-6",
language = "English (US)",
volume = "79",
journal = "European Physical Journal C",
issn = "1434-6044",
publisher = "Springer New York",
number = "3",

}

TY - JOUR

T1 - Measurement of the photon identification efficiencies with the ATLAS detector using LHC Run 2 data collected in 2015 and 2016

AU - Atlas Collaboration

AU - Aaboud, M.

AU - Aad, G.

AU - Abbott, B.

AU - Abdinov, O.

AU - Abeloos, B.

AU - Abhayasinghe, D. K.

AU - Abidi, S. H.

AU - AbouZeid, O. S.

AU - Abraham, N. L.

AU - Abramowicz, H.

AU - Abreu, H.

AU - Abulaiti, Y.

AU - Acharya, B. S.

AU - Adachi, S.

AU - Adam, L.

AU - Adamczyk, L.

AU - Adelman, J.

AU - Adersberger, M.

AU - Adiguzel, A.

AU - Adye, T.

AU - Affolder, A. A.

AU - Afik, Y.

AU - Agheorghiesei, C.

AU - Aguilar-Saavedra, J. A.

AU - Ahmadov, F.

AU - Aielli, G.

AU - Akatsuka, S.

AU - Åkesson, T. P.A.

AU - Akilli, E.

AU - Akimov, A. V.

AU - Alberghi, G. L.

AU - Albert, J.

AU - Albicocco, P.

AU - Alconada Verzini, M. J.

AU - Alderweireldt, S.

AU - Aleksa, M.

AU - Aleksandrov, I. N.

AU - Alexa, C.

AU - Alexopoulos, T.

AU - Alhroob, M.

AU - Ali, B.

AU - Alimonti, G.

AU - Alison, J.

AU - Alkire, S. P.

AU - Allaire, C.

AU - Allbrooke, B. M.M.

AU - Cheu, Elliott C

AU - Johns, Kenneth A

AU - Rutherfoord, John P

AU - Varnes, Erich W

PY - 2019/3/1

Y1 - 2019/3/1

N2 - The efficiency of the photon identification criteria in the ATLAS detector is measured using 36.1fb1 to 36.7fb1 of pp collision data at s=13 TeV collected in 2015 and 2016. The efficiencies are measured separately for converted and unconverted isolated photons, in four different pseudorapidity regions, for transverse momenta between 10 GeV and 1.5 TeV. The results from the combination of three data-driven techniques are compared with the predictions from simulation after correcting the variables describing the shape of electromagnetic showers in simulation for the average differences observed relative to data. Data-to-simulation efficiency ratios are determined to account for the small residual efficiency differences. These factors are measured with uncertainties between 0.5% and 5% depending on the photon transverse momentum and pseudorapidity. The impact of the isolation criteria on the photon identification efficiency, and that of additional soft pp interactions, are also discussed. The probability of reconstructing an electron as a photon candidate is measured in data, and compared with the predictions from simulation. The efficiency of the reconstruction of photon conversions is measured using a sample of photon candidates from Z→ μμγ events, exploiting the properties of the ratio of the energies deposited in the first and second longitudinal layers of the ATLAS electromagnetic calorimeter.

AB - The efficiency of the photon identification criteria in the ATLAS detector is measured using 36.1fb1 to 36.7fb1 of pp collision data at s=13 TeV collected in 2015 and 2016. The efficiencies are measured separately for converted and unconverted isolated photons, in four different pseudorapidity regions, for transverse momenta between 10 GeV and 1.5 TeV. The results from the combination of three data-driven techniques are compared with the predictions from simulation after correcting the variables describing the shape of electromagnetic showers in simulation for the average differences observed relative to data. Data-to-simulation efficiency ratios are determined to account for the small residual efficiency differences. These factors are measured with uncertainties between 0.5% and 5% depending on the photon transverse momentum and pseudorapidity. The impact of the isolation criteria on the photon identification efficiency, and that of additional soft pp interactions, are also discussed. The probability of reconstructing an electron as a photon candidate is measured in data, and compared with the predictions from simulation. The efficiency of the reconstruction of photon conversions is measured using a sample of photon candidates from Z→ μμγ events, exploiting the properties of the ratio of the energies deposited in the first and second longitudinal layers of the ATLAS electromagnetic calorimeter.

UR - http://www.scopus.com/inward/record.url?scp=85062611658&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85062611658&partnerID=8YFLogxK

U2 - 10.1140/epjc/s10052-019-6650-6

DO - 10.1140/epjc/s10052-019-6650-6

M3 - Article

AN - SCOPUS:85062611658

VL - 79

JO - European Physical Journal C

JF - European Physical Journal C

SN - 1434-6044

IS - 3

M1 - 205

ER -