Mechanical assembly of complex, 3D mesostructures from releasable multilayers of advanced materials

Zheng Yan, Fan Zhang, Fei Liu, Mengdi Han, Dapeng Ou, Yuhao Liu, Qing Lin, Xuelin Guo, Haoran Fu, Zhaoqian Xie, Mingye Gao, Yuming Huang, Jung Hwan Kim, Yitao Qiu, Kewang Nan, Jeonghyun Kim, Philipp Gutruf, Hongying Luo, An Zhao, Keh Chih HwangYonggang Huang, Yihui Zhang, John A. Rogers

Research output: Contribution to journalArticlepeer-review

103 Scopus citations

Abstract

Capabilities for assembly of three-dimensional (3D) micro/nanostructures in advanced materials have important implications across a broad range of application areas, reaching nearly every class of microsystem technology. Approaches that rely on the controlled, compressive buckling of 2D precursors are promising because of their demonstrated compatibility with the most sophisticated planar technologies, where materials include inorganic semiconductors, polymers, metals, and various heterogeneous combinations, spanning length scales from submicrometer to centimeter dimensions. We introduce a set of fabrication techniques and design concepts that bypass certain constraints set by the underlying physics and geometrical properties of the assembly processes associated with the original versions of these methods. In particular, the use of releasable, multilayer 2D precursors provides access to complex 3D topologies, including dense architectures with nested layouts, controlled points of entanglement, and other previously unobtainable layouts. Furthermore, the simultaneous, coordinated assembly of additional structures can enhance the structural stability and drive the motion of extended features in these systems. The resulting 3D mesostructures, demonstrated in a diverse set of more than 40 different examples with feature sizes from micrometers to centimeters, offer unique possibilities in device design. A 3D spiral inductor for near-field communication represents an example where these ideas enable enhanced quality (Q) factors and broader working angles compared to those of conventional 2D counterparts.

Original languageEnglish (US)
Article numbere1601014
JournalScience Advances
Volume2
Issue number9
DOIs
StatePublished - Sep 2016

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'Mechanical assembly of complex, 3D mesostructures from releasable multilayers of advanced materials'. Together they form a unique fingerprint.

Cite this