Mechanics of blood flow in the microcirculation.

Research output: Contribution to journalArticle

54 Citations (Scopus)

Abstract

The microcirculation in most tissues consists of an intricate network of very narrow tubes. In analyses of blood flow through the microcirculation, inertial effects can be neglected, but continuum models for blood cannot be assumed, since blood is a concentrated suspension of cells with dimensions comparable to vessel diameters. These cells strongly influence blood flow. About 45% of blood volume consists of red blood cells, whose key mechanical properties are known. A red cell has a fluid interior, surrounded by a flexible membrane, which strongly resists area changes, but bends and shears easily. White blood cells are comparable in size but much less numerous. They are less flexible than red cells and capable of active locomotion. Other suspended elements are much smaller than red cells: This review focuses on the mechanics of red cell motion in the microcirculation. Experimental and theoretical studies of blood flow in uniform tubes, bifurcations and networks are discussed. Comparisons between predicted and observed flows in networks imply that resistance to blood flow in living microvessels is higher than that in uniform tubes with corresponding diameters. Living microvessels have non-uniform geometries, and red cells must deform continually to traverse them. Theoretical results are presented implying that these transient deformations contribute to increased flow resistance in the microcirculation.

Original languageEnglish (US)
Pages (from-to)305-321
Number of pages17
JournalSymposia of the Society for Experimental Biology
Volume49
StatePublished - 1995

Fingerprint

Microcirculation
Mechanics
Microvessels
Locomotion
Blood Volume
Suspensions
Leukocytes
Theoretical Models
Erythrocytes
Membranes

Cite this

Mechanics of blood flow in the microcirculation. / Secomb, Timothy W.

In: Symposia of the Society for Experimental Biology, Vol. 49, 1995, p. 305-321.

Research output: Contribution to journalArticle

@article{7a87f6e846fa4cd89808344c5d72caca,
title = "Mechanics of blood flow in the microcirculation.",
abstract = "The microcirculation in most tissues consists of an intricate network of very narrow tubes. In analyses of blood flow through the microcirculation, inertial effects can be neglected, but continuum models for blood cannot be assumed, since blood is a concentrated suspension of cells with dimensions comparable to vessel diameters. These cells strongly influence blood flow. About 45{\%} of blood volume consists of red blood cells, whose key mechanical properties are known. A red cell has a fluid interior, surrounded by a flexible membrane, which strongly resists area changes, but bends and shears easily. White blood cells are comparable in size but much less numerous. They are less flexible than red cells and capable of active locomotion. Other suspended elements are much smaller than red cells: This review focuses on the mechanics of red cell motion in the microcirculation. Experimental and theoretical studies of blood flow in uniform tubes, bifurcations and networks are discussed. Comparisons between predicted and observed flows in networks imply that resistance to blood flow in living microvessels is higher than that in uniform tubes with corresponding diameters. Living microvessels have non-uniform geometries, and red cells must deform continually to traverse them. Theoretical results are presented implying that these transient deformations contribute to increased flow resistance in the microcirculation.",
author = "Secomb, {Timothy W}",
year = "1995",
language = "English (US)",
volume = "49",
pages = "305--321",
journal = "Symposia of the Society for Experimental Biology",
issn = "0081-1386",
publisher = "Society for Experimental Biology",

}

TY - JOUR

T1 - Mechanics of blood flow in the microcirculation.

AU - Secomb, Timothy W

PY - 1995

Y1 - 1995

N2 - The microcirculation in most tissues consists of an intricate network of very narrow tubes. In analyses of blood flow through the microcirculation, inertial effects can be neglected, but continuum models for blood cannot be assumed, since blood is a concentrated suspension of cells with dimensions comparable to vessel diameters. These cells strongly influence blood flow. About 45% of blood volume consists of red blood cells, whose key mechanical properties are known. A red cell has a fluid interior, surrounded by a flexible membrane, which strongly resists area changes, but bends and shears easily. White blood cells are comparable in size but much less numerous. They are less flexible than red cells and capable of active locomotion. Other suspended elements are much smaller than red cells: This review focuses on the mechanics of red cell motion in the microcirculation. Experimental and theoretical studies of blood flow in uniform tubes, bifurcations and networks are discussed. Comparisons between predicted and observed flows in networks imply that resistance to blood flow in living microvessels is higher than that in uniform tubes with corresponding diameters. Living microvessels have non-uniform geometries, and red cells must deform continually to traverse them. Theoretical results are presented implying that these transient deformations contribute to increased flow resistance in the microcirculation.

AB - The microcirculation in most tissues consists of an intricate network of very narrow tubes. In analyses of blood flow through the microcirculation, inertial effects can be neglected, but continuum models for blood cannot be assumed, since blood is a concentrated suspension of cells with dimensions comparable to vessel diameters. These cells strongly influence blood flow. About 45% of blood volume consists of red blood cells, whose key mechanical properties are known. A red cell has a fluid interior, surrounded by a flexible membrane, which strongly resists area changes, but bends and shears easily. White blood cells are comparable in size but much less numerous. They are less flexible than red cells and capable of active locomotion. Other suspended elements are much smaller than red cells: This review focuses on the mechanics of red cell motion in the microcirculation. Experimental and theoretical studies of blood flow in uniform tubes, bifurcations and networks are discussed. Comparisons between predicted and observed flows in networks imply that resistance to blood flow in living microvessels is higher than that in uniform tubes with corresponding diameters. Living microvessels have non-uniform geometries, and red cells must deform continually to traverse them. Theoretical results are presented implying that these transient deformations contribute to increased flow resistance in the microcirculation.

UR - http://www.scopus.com/inward/record.url?scp=0029447751&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0029447751&partnerID=8YFLogxK

M3 - Article

C2 - 8571232

AN - SCOPUS:0029447751

VL - 49

SP - 305

EP - 321

JO - Symposia of the Society for Experimental Biology

JF - Symposia of the Society for Experimental Biology

SN - 0081-1386

ER -